1
|
Styszko K, Pamuła J, Pac A, Sochacka-Tatara E. Biomarkers for polycyclic aromatic hydrocarbons in human excreta: recent advances in analytical techniques-a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7099-7113. [PMID: 37530922 PMCID: PMC10517897 DOI: 10.1007/s10653-023-01699-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are generated by the incomplete combustion of organic materials. The main anthropogenic sources of PAHs are the combustion of solid fuels for heating purposes, illegal waste incineration, road transport and industries based on fossil fuels. PAHs can easily enter the body because they are present in all elements of the environment, including water, soil, air, and food. Due to their ubiquitous presence, PAHs, may exert a harmful effect on human health. Assessing PAH exposure through biomonitoring mostly involve techniques to measure the concentration of 1-hydroxypyrene in human urine. Nevertheless, through recent progress in analytical techniques, other common metabolites of PAHs in human biospecimens can be detected. A scientific literature search was conducted to determine which hydroxy derivatives of PAHs are markers of PAHs exposure and to reveal the leading sources of these compounds. Techniques for analyzing biological samples to identify OH-PAHs are also discussed. The most frequently determined OH-PAH in human urine is 1-hydroxypyrene, the concentration of which reaches up to a dozen ng/L in urine. Apart from this compound, the most frequently determined biomarkers were naphthalene and fluorene metabolites. The highest concentrations of 1- and 2-hydroxynaphthalene, as well as 2-hydroxyfluorene, are associated with occupational exposure and reach approximately 30 ng/L in urine. High molecular weight PAH metabolites have been identified in only a few studies. To date, PAH metabolites in feces have been analyzed only in animal models for PAH exposure. The most frequently used analytical method is HPLC-FLD. However, compared to liquid chromatography, the LOD for gas chromatography methods is at least one order of magnitude lower. The hydroxy derivatives naphthalene and fluorene may also serve as indicators of PAH exposure.
Collapse
Affiliation(s)
- Katarzyna Styszko
- Department of Coal Chemistry and Environmental Sciences, Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Justyna Pamuła
- Department of Geoengineering and Water Management, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Kraków, Poland
| | - Agnieszka Pac
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Sochacka-Tatara
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
2
|
El Hajjar M, Maître A, Marques M, Persoons R, Demeilliers C. Metabolism of benzo[a]pyrene after low-dose subchronic exposure to an industrial mixture of carcinogenic polycyclic aromatic hydrocarbons in rats: a cocktail effect study. Arch Toxicol 2023; 97:865-874. [PMID: 36779994 DOI: 10.1007/s00204-023-03441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are interesting environmental pollutants for understanding cocktail effects. High-molecular-weight-PAHs (HMW-PAHs) are classified as probable or possible carcinogens; only benzo[a]pyrene (B[a]P) is a certain carcinogen in humans. Their toxicity depends on their metabolic activation. While 3-hydroxybenzo[a]pyrene (3-OHB[a]P) represents its detoxification pathway, trans-anti-7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene (tetrol-B[a]P) represents the carcinogenicity pathway. The objective was to study the metabolism of B[a]P and HMW-PAHs during chronic low-dose exposure to B[a]P or a PAH mixture. Rats were exposed orally 5 times/week for 10 weeks to low-levels of B[a]P (0.02 and 0.2 mg.kg-1.d-1) or to an industrial mixture extracted from coal tar pitch (CTP) adjusted to 0.2 mg.kg-1.d-1 B[a]P. Urinary levels of monohydroxy-, diol-, and tetrol-PAH were measured during weeks 1 and 10 by HPLC-fluorescence and GC‒MS/MS. After 1 week, the percentages of B[a]P eliminated as 3-OHB[a]P and tetrol-B[a]P were not different depending on the dose of B[a]P, whereas they were reduced by half in the CTP group. Repeated exposure led to an increase in the percentages of the 2 metabolites for the 0.02-B[a]P group. Moreover, the percentage of B[a]P eliminated as 3-OHB[a]P was equal in the 0.2-B[a]P and CTP groups, whereas it remained halved for tetrol-B[a]P in the CTP group. The percent elimination of HMW-PAH metabolites did not vary between weeks 1 and 10. Thus, dose, duration of exposure and chemical composition of the mixture have a major influence on PAH metabolism that goes beyond a simple additive effect. This work contributes to the reflection on determination of limit values and risk assessments in a context of poly-exposures.
Collapse
Affiliation(s)
- Maguy El Hajjar
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Anne Maître
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Marie Marques
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Renaud Persoons
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.,Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France
| | - Christine Demeilliers
- Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France. .,Univ. Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, CHU Grenoble Alpes, TIMC, 38000, Grenoble, France.
| |
Collapse
|
4
|
Lutier S, Maître A, Bonneterre V, Bicout DJ, Marques M, Persoons R, Barbeau D. Urinary elimination kinetics of 3-hydroxybenzo(a)pyrene and 1-hydroxypyrene of workers in a prebake aluminum electrode production plant: Evaluation of diuresis correction methods for routine biological monitoring. ENVIRONMENTAL RESEARCH 2016; 147:469-479. [PMID: 26970901 DOI: 10.1016/j.envres.2016.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/10/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous carcinogenic pollutants emitted in complex mixtures in the ambient air and contribute to the incidence of human cancers. Taking into account all absorption routes, biomonitoring is more relevant than atmospheric measurements to health risk assessment, but knowledge about how to use biomarkers is essential. In this work, urinary elimination kinetic of 1-hydroxypyrene (1-OHP) and 3-hydroxybenzo(a)pyrene (3-OHBaP) were studied in six electrometallurgy workers after PAHs exposure. Spot samples were collected on pre- and post-shift of the last workday then the whole urinations were separately sampled during the weekend. Non-linear mixed effects models were built to study inter- and intra-individual variability of both urinary metabolites toxicokinetic and investigate diuresis correction ways. Comparison of models confirmed the diuresis correction requirement to perform urinary biomonitoring of pyrene and BaP exposure. Urinary creatinine was found as a better way than specific gravity to normalize urinary concentrations of 1-OHP and as a good compromise for 3-OHBaP. Maximum observed levels were 1.0 µmol/mol creatinine and 0.8nmol/mol creatinine for 1-OHP and 3-OHBaP, respectively. Urinary 1-OHP concentrations on post-shift were higher than pre-shift for each subject, while 3-OHBaP levels were steady or decreased, and maximum urinary excretion rates of 3-OHBaP was delayed compared to 1-OHP. These results were consistent with the sampling time previously proposed for 3-OHBaP analysis, the next morning after exposure. Apparent urinary half-life of 1-OHP and 3-OHBaP ranged from 12.0h to 18.2h and from 4.8h to 49.5h, respectively. Finally, inter-individual variability of 1-OHP half-life seemed linked with the cutaneous absorption extent during exposure, while calculation of 3-OHBaP half-life required the awareness of individual urinary background level. The toxicokinetic modeling described here is an efficient tool which could be used to describe elimination kinetic and determine diuresis correction way for any other urinary biomarkers of chemicals or metals exposure.
Collapse
Affiliation(s)
- Simon Lutier
- EPSP-TIMC (CNRS UMR 5525), Université Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
| | - Anne Maître
- EPSP-TIMC (CNRS UMR 5525), Université Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France; Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, France
| | - Vincent Bonneterre
- EPSP-TIMC (CNRS UMR 5525), Université Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France; Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, France
| | - Dominique J Bicout
- EPSP-TIMC (CNRS UMR 5525), Université Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
| | - Marie Marques
- EPSP-TIMC (CNRS UMR 5525), Université Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
| | - Renaud Persoons
- Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, France
| | - Damien Barbeau
- EPSP-TIMC (CNRS UMR 5525), Université Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France; Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, France.
| |
Collapse
|
5
|
Lin CS, Chiou WY, Lee KW, Chen TF, Lin YJ, Huang JL. Xeroderma pigmentosum, complementation group D expression in H1299 lung cancer cells following benzo[a]pyrene exposure as well as in head and neck cancer patients. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:39-47. [PMID: 26731659 DOI: 10.1080/15287394.2015.1104271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA repair genes play critical roles in response to carcinogen-induced and anticancer therapy-induced DNA damage. Benzo[a]pyrene (BaP), the most carcinogenic polycyclic aromatic hydrocarbon (PAH), is classified as a group 1 carcinogen by International Agency for Research on Cancer. The aims of this study were to (1) evaluate the effects of BaP on DNA repair activity and expression of DNA repair genes in vitro and (2) examine the role of xeroderma pigmentosum, complementation group D (XPD) mRNA expression in human head and neck cancers. Host cell reactivation assay showed that BaP inhibited nucleotide excision repair in H1299 lung cancer cells. DNA repair through the non-homologous end-joining pathway was not affected by BaP. Real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) and Western blot demonstrated that XPD was downregulated by BaP treatment. BaP exposure did not apparently affect expression of another 11 DNA repair genes. BaP treatment increased the DNA damage marker γ-H2AX and ultraviolet (UV) sensitivity, supporting an impairment of DNA repair in BaP-treated cells. XPD expression was also examined by quantitative RT-PCR in 68 head and neck cancers, and a lower XPD mRNA level was found in smokers' cancer specimens. Importantly, reduced XPD expression was correlated with patient 5-year overall survival rate (35 vs. 56%) and was an independent prognostic factor (hazard ratio: 2.27). Data demonstrated that XPD downregulation was correlated with BaP exposure and human head and neck cancer survival.
Collapse
Affiliation(s)
- Chang-Shen Lin
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
- b Department of Biological Sciences , National Sun Yat-sen University , Kaohsiung , Taiwan
| | - Wen-Yen Chiou
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Ka-Wo Lee
- c Department of Otolaryngology, Faculty of Medicine , College of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan
- d Department of Otolaryngology , Kaohsiung Medical University Hospital , Kaohsiung , Taiwan
| | - Tzu-Fen Chen
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Yuan-Jen Lin
- a Graduate Institute of Medicine, College of Medicine , Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Jau-Ling Huang
- e Department of Bioscience Technology , College of Health Science, Chang Jung Christian University , Tainan , Taiwan
| |
Collapse
|