1
|
Cho K, Lee J, Kim J. Integrated high-throughput drug screening microfluidic system for comprehensive ocular toxicity assessment. Toxicol In Vitro 2024; 98:105843. [PMID: 38735502 DOI: 10.1016/j.tiv.2024.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Traditional experimental methodologies suffer from a few limitations in the toxicological evaluation of the preservatives added to eye drops. In this study, we overcame these limitations by using a microfluidic device. We developed a microfluidic system featuring a gradient concentration generator for preservative dosage control with microvalves and micropumps, automatically regulated by a programmable Arduino board. This system facilitated the simultaneous toxicological evaluation of human corneal epithelial cells against eight different concentrations of preservatives, allowing for quadruplicate experiments in a single run. In our study, the IC50 values for healthy eyes and those affected with dry eyes syndrome showed an approximately twofold difference. This variation is likely attributable to the duration for which the preservative remained in contact with corneal cells before being washed off by the medium, suggesting the significance of exposure time in the cytotoxic effect of preservatives. Our microfluidic system, automated by Arduino, simulated healthy and dry eye environments to study benzalkonium chloride toxicity and revealed significant differences in cell viability, with IC50 values of 0.0033% for healthy eyes and 0.0017% for dry eyes. In summary, we implemented the pinch-to-zoom feature of an electronic tablet in our microfluidic system, offering innovative alternatives for eye research.
Collapse
Affiliation(s)
- Kyongjin Cho
- Dept. of Ophthalmology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jinho Lee
- Research Institute of Natural Science and Department of Physics Education, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jeongyun Kim
- Dept. of Physics, College of Natural Science, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
2
|
Dufva M. A quantitative meta-analysis comparing cell models in perfused organ on a chip with static cell cultures. Sci Rep 2023; 13:8233. [PMID: 37217582 DOI: 10.1038/s41598-023-35043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
As many consider organ on a chip for better in vitro models, it is timely to extract quantitative data from the literature to compare responses of cells under flow in chips to corresponding static incubations. Of 2828 screened articles, 464 articles described flow for cell culture and 146 contained correct controls and quantified data. Analysis of 1718 ratios between biomarkers measured in cells under flow and static cultures showed that the in all cell types, many biomarkers were unregulated by flow and only some specific biomarkers responded strongly to flow. Biomarkers in cells from the blood vessels walls, the intestine, tumours, pancreatic island, and the liver reacted most strongly to flow. Only 26 biomarkers were analysed in at least two different articles for a given cell type. Of these, the CYP3A4 activity in CaCo2 cells and PXR mRNA levels in hepatocytes were induced more than two-fold by flow. Furthermore, the reproducibility between articles was low as 52 of 95 articles did not show the same response to flow for a given biomarker. Flow showed overall very little improvements in 2D cultures but a slight improvement in 3D cultures suggesting that high density cell culture may benefit from flow. In conclusion, the gains of perfusion are relatively modest, larger gains are linked to specific biomarkers in certain cell types.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Valle NME, Nucci MP, Alves AH, Rodrigues LD, Mamani JB, Oliveira FA, Lopes CS, Lopes AT, Carreño MNP, Gamarra LF. Advances in Concentration Gradient Generation Approaches in a Microfluidic Device for Toxicity Analysis. Cells 2022; 11:cells11193101. [PMID: 36231063 PMCID: PMC9563958 DOI: 10.3390/cells11193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models.
Collapse
Affiliation(s)
- Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | - Caique S. Lopes
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Alexandre T. Lopes
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Marcelo N. P. Carreño
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
4
|
Singh VK, Seed TM. Acute radiation syndrome drug discovery using organ-on-chip platforms. Expert Opin Drug Discov 2022; 17:865-878. [PMID: 35838021 DOI: 10.1080/17460441.2022.2099833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION : The high attrition rate during drug development remains a challenge that costs a significant amount of time and money. Improving the probabilities of success during the early stages of radiation medical countermeasure (MCM) development for approval by the United States Food and Drug Administration (US FDA) following the Animal Rule will reduce this burden. For optimal development of MCMs, we need suitable and efficient radiation injury models with high biological relevance for evaluating drug efficacy as well as biomarker discovery and validation. AREA COVERED This article focuses on new technologies involving various organs-on-chip platforms. Of late, there have been rapid development of these technologies, especially in terms of mimicking both normal and abnormal physiological conditions. Here, we suggest possible applications of these novel systems for the discovery and development of radiation MCMs for the acute radiation syndrome (ARS). We offer preliminary information on the utility of one such system for MCM research and discovery for the ARS condition. EXPERT OPINION : Each organ-on-a-chip system has its own strengths and shortcomings. As such, the system selected for MCM discovery, development, and regulatory approval should be carefully considered and optimized to the fullest extent in order to augment successful drug testing and the minimization of attrition rates of candidate agents. The recent encouraging progress with organ-on-a-chip technology will likely lead to additional radiation MCMs for ARS approved by the US FDA. The acceptance of organ-on-a-chip technology may be a promising step toward improving the success rate of pharmaceuticals in MCM development.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
5
|
Tutty MA, Vella G, Prina-Mello A. Pre-clinical 2D and 3D toxicity response to a panel of nanomaterials; comparative assessment of NBM-induced liver toxicity. Drug Deliv Transl Res 2022; 12:2157-2177. [PMID: 35763196 PMCID: PMC9360078 DOI: 10.1007/s13346-022-01170-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Nanobiomaterials, or NBMs, have been used in medicine and bioimaging for decades, with wide-reaching applications ranging from their uses as carriers of genes and drugs, to acting as sensors and probes. When developing nanomedicine products, it is vitally important to evaluate their safety, ensuring that both biocompatibility and efficacy are achieved so their applications in these areas can be safe and effective. When discussing the safety of nanomedicine in general terms, it is foolish to make generalised statements due to the vast array of different manufactured nanomaterials, formulated from a multitude of different materials, in many shapes and sizes; therefore, NBM pre-clinical screening can be a significant challenge. Outside of their distribution in the various tissues, organs and cells in the body, a key area of interest is the impact of NBMs on the liver. A considerable issue for researchers today is accurately predicting human-specific liver toxicity prior to clinical trials, with hepatotoxicity not only the most cited reasons for withdrawal of approved drugs, but also a primary cause of attrition in pre-launched drug candidates. To date, no simple solution to adequately predict these adverse effects exists prior to entering human experimentation. The limitations of the current pre-clinical toolkit are believed to be one of the main reasons for this, with questions being raised on the relevance of animal models in pre-clinical assessment, and over the ability of conventional, simplified in vitro cell–based assays to adequately assess new drug candidates or NBMs. Common 2D cell cultures are unable to adequately represent the functions of 3D tissues and their complex cell–cell and cell–matrix interactions, as well as differences found in diffusion and transport conditions. Therefore, testing NBM toxicity in conventional 2D models may not be an accurate reflection of the actual toxicity these materials impart on the body. One such method of overcoming these issues is the use of 3D cultures, such as cell spheroids, to more accurately assess NBM-tissue interaction. In this study, we introduce a 3D hepatocellular carcinoma model cultured from HepG2 cells to assess both the cytotoxicity and viability observed following treatment with a variety of NBMs, namely a nanostructured lipid carrier (in the specific technical name = LipImage™ 815), a gold nanoparticle (AuNP) and a panel of polymeric (in the specific technical name = PACA) NBMs. This model is also in compliance with the 3Rs policy of reduction, refinement and replacement in animal experimentation [1], and meets the critical need for more advanced in vitro models for pre-clinical nanotoxicity assessment.
Collapse
Affiliation(s)
- Melissa Anne Tutty
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin 8, Ireland. .,Laboratory for Biological Characterisation of Advanced Materials (LBCAM), TTMI, School of Medicine, Trinity College Dublin, Dublin 8, Ireland.
| | - Gabriele Vella
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin 8, Ireland.,Laboratory for Biological Characterisation of Advanced Materials (LBCAM), TTMI, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Trinity Translational Medicine Institute (TTMI), School of Medicine, Trinity College Dublin, Dublin 8, Ireland. .,Laboratory for Biological Characterisation of Advanced Materials (LBCAM), TTMI, School of Medicine, Trinity College Dublin, Dublin 8, Ireland. .,Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
6
|
Park SJ, Jung TH, Kim JH, Lee KY, Kim J, Ju J, Moon SH. In silico design and fabrication of an SFI chip-based microspheroid culture system. Biomater Sci 2022; 10:2991-3005. [PMID: 35521942 DOI: 10.1039/d2bm00250g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of microfluidic devices and computational fluid dynamics (CFD) has propelled the need for next-generation biomimetic cell culture platforms that are flexible for monitoring and regulation. Therefore, this study evaluated a CFD application in an in silico-designed and spheroid-based flow integration 3D cell culture chip (SFI chip) to illustrate cell culture, drug screening, cytokine delivery, and differentiation of cells in a platform that partially recapitulates the natural environment. Our results show that a flow rate of 0.05 mL h-1 or less induced no physical stress in the SFI chip (15 mm), and uniform cell spheroids (approximately 200 μm) were formed across the platform. The cultured cells were tested in several experimental contexts (co-culture, drug screening, cytokine delivery, and differentiation), demonstrating the usefulness of computational simulation in expediting discovery and simple and effective means to scale the production of standardized cell spheroids cultured under dynamic and natural conditions. Advanced cell culture technologies can be used to accelerate research and discovery and the preclinical and clinical development of cell and cell-free therapies for urgent medical needs.
Collapse
Affiliation(s)
- Soon-Jung Park
- Department of Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.,Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea.
| | - Taek-Hee Jung
- Department of Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.,Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea.
| | - Jong Hyun Kim
- Department of Biological Science, Hyupsung University, Hwasung, Republic of Korea
| | - Kyoung-Yong Lee
- Carbon Neutral Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jeongyun Kim
- Department of Physics, College of Science & Technology, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea.
| | - Jongil Ju
- Department of Physics, College of Science & Technology, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea. .,Department of R&D, ABM Scientific Co., Cheonan, Republic of Korea
| | - Sung-Hwan Moon
- Department of Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea.,Stem Cell Research Institute, T&R Biofab Co. Ltd, Siheung, Republic of Korea. .,Department of Animal Biotechnology, Sangji University, Wonju, Republic of Korea
| |
Collapse
|
7
|
Microfluidic system with light intensity filters facilitating the application of photodynamic therapy for high-throughput drug screening. Photodiagnosis Photodyn Ther 2022; 38:102812. [PMID: 35304312 DOI: 10.1016/j.pdpdt.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Photodynamic therapy utilizes light energy with a photosensitizer (a light-sensitive drug) to kill cancer cells through light activation. When a photosensitizer is injected into the bloodstream and exposed to a specific wavelength of light, it generates oxygen to destroy or damage nearby cancer cells, while minimizing side effects on normal cells. Although photodynamic therapy is effective for treating cancer, various parameters, such as the optimum light intensity and photosensitizer dose, are currently poorly understood due to the complexity of conventional experimental schemes. METHODS To effectively perform a simultaneous single parallel test for several different light irradiation conditions on each cell, a microfluidic device was developed to generate eight different intensities from a single light-emitting diode source, through eight different color dye concentrations functioning as light intensity filters. To show that this novel high-throughput microfluidic system can analyze the effects of various light intensities during photodynamic therapy, the optimum light intensities and photosensitizer doses were determined for two different cancer cell lines. RESULTS Optimum light intensities and photosensitizer were determined for all cell lines. The photodynamic therapy effects in response to different irradiated light intensities were characterized by analyzing cell viability after photosensitizer treatment CONCLUSIONS: : The developed platform is capable of being used as a photodynamic therapy screening tool. The proposed platform provides a simple and robust way to optimize the combined parameters of light intensity and dosage for diverse types of cancer cells.
Collapse
|
8
|
Kerk YJ, Jameel A, Xing X, Zhang C. Recent advances of integrated microfluidic suspension cell culture system. ENGINEERING BIOLOGY 2021; 5:103-119. [PMID: 36970555 PMCID: PMC9996741 DOI: 10.1049/enb2.12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
Microfluidic devices with superior microscale fluid manipulation ability and large integration flexibility offer great advantages of high throughput, parallelisation and multifunctional automation. Such features have been extensively utilised to facilitate cell culture processes such as cell capturing and culturing under controllable and monitored conditions for cell-based assays. Incorporating functional components and microfabricated configurations offered different levels of fluid control and cell manipulation strategies to meet diverse culture demands. This review will discuss the advances of single-phase flow and droplet-based integrated microfluidic suspension cell culture systems and their applications for accelerated bioprocess development, high-throughput cell selection, drug screening and scientific research to insight cell biology. Challenges and future prospects for this dynamically developing field are also highlighted.
Collapse
Affiliation(s)
- Yi Jing Kerk
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Aysha Jameel
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
| | - Xin‐Hui Xing
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| | - Chong Zhang
- Institute of Biochemical EngineeringDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- MOE Key Laboratory of Industrial BiocatalysisDepartment of Chemical Engineering, Tsinghua UniversityBeijingChina
- Center for Synthetic and Systems BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
9
|
Liang L, Jin YX, Zhu XQ, Zhou FL, Yang Y. Real-time detection and monitoring of the drug resistance of single myeloid leukemia cells by diffused total internal reflection. LAB ON A CHIP 2018; 18:1422-1429. [PMID: 29713720 DOI: 10.1039/c8lc00088c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Real-time detection and monitoring of the drug resistance of single cells have important significance in clinical diagnosis and therapy. Traditional methods operate a number of times for each individual concentration, and innovation is required for the design of more simple and efficient manipulation platforms with necessary higher sensitivity. Here, we have developed a novel diffused total internal reflection (TIR) method to perform drug metabolism and cytotoxicity analysis of trapped myeloid leukemia cells. Molm-13 cells, a type of acute myeloid leukemia cell, were chosen and injected into the device and fittingly captured by cell traps. Differing from previous studies, a series of different concentrations of azelaic acid (AZA) drug could be used from 0 mM to 50 mM through convection and diffusion processes in a single chip, with each concentration region featuring 50 cells, with a total of 549 cell trapping units. Thanks to the high sensitivity of the TIR method, only cells with the same drug concentration could be illuminated in the detection process. By adjusting the incident angle, we could exactly detect and monitor the drug resistance of the cells using different drug concentrations and the experimental resolution of the drug concentration was as small as 5 mM. Images of the membrane integrity and morphology of the cells in the bright field were measured and we also monitored the cell viabilities in the dark field over 2 hours. The effects of AZA on the Molm-13 cells were explored in different concentrations at the single cell level. Compared with the results of the traditional MTT assay method, the experimental results are more simple and accurate. A cell death of 5% at an AZA concentration of 5 mM was observed after 30 minutes, while a concentration of 40 mM corresponded to a 98% cell death. The designed method in this study provides a novel toolkit to control and monitor drug resistance at the single cell level more easily with higher sensitivity and we believe it has significant potential application in single cell quality assessment and medicine analysis in clinical practice.
Collapse
Affiliation(s)
- L Liang
- School of Physics & technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | | | | | | | | |
Collapse
|
10
|
Roh T, De U, Lim SK, Kim MK, Choi SM, Lim DS, Yoon S, Kacew S, Kim HS, Lee BM. Detoxifying effect of pyridoxine on acetaminophen-induced hepatotoxicity via suppressing oxidative stress injury. Food Chem Toxicol 2018; 114:11-22. [PMID: 29438775 DOI: 10.1016/j.fct.2018.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 12/24/2022]
Abstract
The detoxifying effect of pyridoxine against acetaminophen (APAP)-induced hepatotoxicity was investigated. HepG2 cells were co-treated with APAP and pyridoxine to compare with betaine or methionine for 24 h. LDH, ALT and AST activities were measured to determine direct cells damage in vitro and in vivo. Lipid peroxidation, antioxidant enzymes activity, and glutathione level were measured. Cytochrome c releaseand procaspase-3, cleaved caspase-3, Bcl-2, or Bax protein levels were measured to determine APAP-induced apoptotic cell death. Pyridoxine treatment significantly increased cell viability and decreased leakage of LDH activity against APAP-induced hepatotoxicity in HepG2 cells. ALT and AST activities were dose-dependently reduced by pyridoxine treatment compared to APAP-treated group. Significant increases in activities of GST and GPx were observed after co-treatment with APAP and pyridoxine. Although APAP-induced Nrf2 and HO-1 expression levels were gradually reduced in HepG2 cells by pyridoxine treatment, induction of antioxidant enzymes activities were dose-dependently increased. These protected effects of pyridoxine against APAP-induced hepatoxicity were closely associated with suppression of APAP-induced oxidative stress and apoptotic cell death in HepG2 cells. These data indicated that the protective action of pyridoxine against hepatic cell injuries was involved in the direct antioxidant activity which provides a pivotal mechanism for its potential hepatoprotective action.
Collapse
Affiliation(s)
- Taehyun Roh
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Umasankar De
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Seong Kwang Lim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Min Kook Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Seul Min Choi
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Duck Soo Lim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Sungpil Yoon
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea.
| | - Byung-Mu Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Seobu-ro 2066, Suwon, Gyeonggi-do, 440-746, South Korea.
| |
Collapse
|
11
|
Bovard D, Iskandar A, Luettich K, Hoeng J, Peitsch MC. Organs-on-a-chip. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317726351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last few years, considerable attention has been given to in vitro models in an attempt to reduce the use of animals and to decrease the rate of preclinical failure associated with the development of new drugs. Simple two-dimensional cultures grown in a dish are now frequently replaced by organotypic cultures with three-dimensional (3-D) architecture, which enables interactions between cells, promoting their differentiation and increasing their in vivo likeness. Microengineering now enables the incorporation of small devices into 3-D culture models to reproduce the complex microenvironment of the modeled organ, often referred to as organs-on-a-chip (OoCs). This review describes various OoCs developed to mimic liver, brain, kidney, and lung tissues. Current challenges encountered in attempts to recreate the in vivo environment are described, as well as some examples of OoCs. Finally, attention is given to the ongoing evolution of OoCs with the aim of solving one of the major limitations in that they can only represent a single organ. Multi-organ-on-a-chip (MOC) systems mimic organ interactions observed in the human body and aim to provide the features of compound uptake, metabolism, and excretion, while simultaneously allowing for insights into biological effects. MOCs might therefore represent a new paradigm in drug development, providing a better understanding of dose responses and mechanisms of toxicity, enabling the detection of drug resistance and supporting the evaluation of pharmacokinetic–pharmacodynamics parameters.
Collapse
Affiliation(s)
- David Bovard
- Philip Morris Products SA, Neuchatel, Switzerland
| | | | | | - Julia Hoeng
- Philip Morris Products SA, Neuchatel, Switzerland
| | | |
Collapse
|
12
|
Cho S, Yoon JY. Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol 2017; 45:34-42. [PMID: 28088094 PMCID: PMC5474140 DOI: 10.1016/j.copbio.2016.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 11/24/2016] [Indexed: 10/20/2022]
Abstract
Man-made xenobiotics, whose potential toxicological effects are not fully understood, are oversaturating the already-contaminated environment. Due to the rate of toxicant accumulation, unmanaged disposal, and unknown adverse effects to the environment and the human population, there is a crucial need to screen for environmental toxicants. Animal models and in vitro models are ineffective models in predicting in vivo responses due to inter-species difference and/or lack of physiologically-relevant 3D tissue environment. Such conventional screening assays possess limitations that prevent dynamic understanding of toxicants and their metabolites produced in the human body. Organ-on-a-chip systems can recapitulate in vivo like environment and subsequently in vivo like responses generating a realistic mock-up of human organs of interest, which can potentially provide human physiology-relevant models for studying environmental toxicology. Feasibility, tunability, and low-maintenance features of organ-on-chips can also make possible to construct an interconnected network of multiple-organs-on-chip toward a realistic human-on-a-chip system. Such interconnected organ-on-a-chip network can be efficiently utilized for toxicological studies by enabling the study of metabolism, collective response, and fate of toxicants through its journey in the human body. Further advancements can address the challenges of this technology, which potentiates high predictive power for environmental toxicology studies.
Collapse
Affiliation(s)
- Soohee Cho
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA
| | - Jeong-Yeol Yoon
- Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ 85721-0038, USA; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0020, USA.
| |
Collapse
|
13
|
Bessada SMF, Barreira JCM, Santos J, Costa C, Pimentel FB, Bessa MJ, Teixeira JP, Oliveira MBPP. Evaluation of the cytotoxicity (HepG2) and chemical composition of polar extracts from the ruderal species Coleostephus myconis (L.) Rchb.f. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:641-650. [PMID: 28524760 DOI: 10.1080/15287394.2017.1286915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Coleostephus myconis (L.) Rchb.f. (Asteraceae) is a highly disseminated plant species with ruderal and persistent growth. Owing to its advantageous agronomic properties, C. myconis might have industrial applications. However, this species needs to be comprehensively characterized before any potential use. In a previous study, the phenolic composition and antioxidant activity of different C. myconis tissues were characterized. This investigation was extended to examine the cytotoxic potential of selected plant tissues (flowers and green parts) using a HepG2 cell line by utilizing the lysosomal neutral red uptake assay or mitochondrial (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. In addition, the macronutrients content, lipophilic compounds (fatty acids, tocopherols), and amino acids were also determined. C. myconis flowers were used in the senescence stage, which was previously identified as the stage that presented maximal phenolic content and highest antioxidant activity. In contrast, stems and leaves were employed due to their high biomass proportion. Regarding cytotoxicity, mitochondrial and lysosomal damage was only significant when HepG2 cells were exposed to the highest extract concentrations (stems and leaves, 0.9 mg/ml; senescent flowers, 0.3 mg/ml). Chemically, the senescent flowers were mostly characterized by their high levels of fat, amino acids (especially threonine), oleic acid, β-, and γ-tocopherol, while stems and leaves contained high concentrations of carbohydrates, linolenic acid, and α-tocopherol. In general, these results provide information regarding the threshold concentrations of C. myconis extracts that might be used in different applications without toxicity hazards.
Collapse
Affiliation(s)
- Sílvia M F Bessada
- a REQUIMTE/LAQV,Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - João C M Barreira
- a REQUIMTE/LAQV,Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
- b CIMO-ESA , Instituto Politécnico de Bragança , Bragança , Portugal
| | - J Santos
- a REQUIMTE/LAQV,Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Carla Costa
- c Department of Environmental Health , Portuguese National Institute of Health , Porto , Portugal
- d EPIUnit - Institute of Public Health , University of Porto , Porto , Portugal
| | - Filipa B Pimentel
- a REQUIMTE/LAQV,Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Maria João Bessa
- c Department of Environmental Health , Portuguese National Institute of Health , Porto , Portugal
- d EPIUnit - Institute of Public Health , University of Porto , Porto , Portugal
| | - João Paulo Teixeira
- c Department of Environmental Health , Portuguese National Institute of Health , Porto , Portugal
- d EPIUnit - Institute of Public Health , University of Porto , Porto , Portugal
| | - M Beatriz P P Oliveira
- a REQUIMTE/LAQV,Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| |
Collapse
|
14
|
Junaid A, Mashaghi A, Hankemeier T, Vulto P. An end-user perspective on Organ-on-a-Chip: Assays and usability aspects. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Kang KJ, Ju SM, Jang YJ, Kim J. Indirect co-culture of stem cells from human exfoliated deciduous teeth and oral cells in a microfluidic platform. Tissue Eng Regen Med 2016; 13:428-436. [PMID: 30603424 DOI: 10.1007/s13770-016-0005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
Oral epithelial-mesenchymal interactions play a key role in tooth development and assist differentiation of dental pulp. Many epithelial and mesenchymal factors in the microenvironment influence dental pulp stem cells to differentiate and regenerate. To investigate the interaction between oral cells during differentiation, we designed a microfluidic device system for indirect co-culture. The system has several advantages, such as consumption of low reagent volume, high-throughput treatment of reagents, and faster mineralization analysis. In this study, stem cells from human exfoliated deciduous teeth were treated with media cultured with human gingival fibroblasts or periodontal ligament stem cells. When human exfoliated deciduous teeth was incubated in media cultured in human gingival fibroblasts and human periodontal ligament stem cells under the concentration gradient constructed by the microfluidic system, no remarkable change in human exfoliated deciduous teeth mineralization efficiency was detected. However, osteoblast gene expression levels in human exfoliated deciduous teeth incubated with human gingival fibroblasts media decreased compared to those in human exfoliated deciduous teeth treated with human periodontal ligament stem cells media, suggesting that indirect co-culture of human exfoliated deciduous with human gingival fibroblasts may inhibit osteogenic cytodifferentiation. This microfluidic culture device allows a co-culture system set-up for sequential treatment with co-culture media and differentiation additives and facilitated the mineralization assay in a micro-culture scale.
Collapse
Affiliation(s)
- Kyung-Jung Kang
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Seon Min Ju
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Young-Joo Jang
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- 2Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
| | - Jeongyun Kim
- 1Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
- 2Department of Nanobiomedical Science and BK21 PLUS Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, 31116 Korea
| |
Collapse
|