1
|
Nicholls LA, Zeile KA, Scotto LD, Ryznar RJ. Timing of dietary effects on the epigenome and their potential protective effects against toxins. Epigenetics 2025; 20:2451495. [PMID: 39825851 DOI: 10.1080/15592294.2025.2451495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome. Most notably, the timing when dietary interventions are given - during a parent's early development, pregnancy, and/or lifetime - result in similar transgenerational epigenetic durations. This implies the existence of multiple opportunities to strategically fortify the epigenome. This narrative review explores how to best utilize dietary modifications to modify the epigenome to protect future generations against negative health effects of persistent environmental toxins. Furthermore, by suggesting an ideal diet with specific micronutrients, macronutrients, and food groups, epigenetics can play a key role in the field of preventive medicine. Based on these findings, longitudinal research should be conducted to determine if a high protein, high-fat, and low-carbohydrate diet during a mother's puberty or pregnancy can epigenetically protect against alcohol, tobacco smoke, and air pollution across multiple generations.
Collapse
Affiliation(s)
- Lynnea A Nicholls
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - Kendall A Zeile
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - London D Scotto
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| | - Rebecca J Ryznar
- Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
- Department of Biomedical Sciences, Rocky Vista University College of Osteopathic Medicine, Parker, CO, USA
| |
Collapse
|
2
|
Dos Santos Reis D, Caixeta GAB, Barbosa JPM, Dos Reis JCGG, Teófilo MNG, Machado CCA, Tavares RS, Filho JRR, Gomes CM, Cruvinel WDM, Araújo EJDA, Amaral VCS. Evaluating the safety profile of rosuvastatin in pregnant Wistar rats: Bridging gaps in reproductive safety data. Reprod Toxicol 2025; 135:108920. [PMID: 40252709 DOI: 10.1016/j.reprotox.2025.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Rosuvastatin, a statin used to treat hypercholesterolemia, inhibits the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HGM-CoA reductase), reducing cholesterol synthesis. Beyond its lipid-lowering effects, rosuvastatin has pleiotropic effects, such as anti-inflammatory and antioxidant properties, with potential application in pre-eclampsia treatment. However, its safety during pregnancy remains controversial. This study evaluated whether prenatal treatment with rosuvastatin calcium induces maternal toxicity and possible embryotoxic, fetotoxic, and teratogenic effects in Wistar rats. Pregnant females received 10, 20, or 40 mg/kg/day of rosuvastatin or a vehicle (saline) by gavage from gestational day 0-20. Maternal toxicity was assessed through weight gain, food and water intake, biochemical markers, histopathology, and myenteric plexus neuron analysis. Fetal evaluations included external, visceral, and skeletal analyses. No significant differences were observed between groups in maternal weight gain, food and water intake, or biochemical parameters. Histopathological analysis showed no dose-dependent abnormalities in the liver, kidneys, heart, or uterus. Enteric neurons exhibited atrophy of nitrergic neurons at 10 and 40 mg/kg, while hypertrophy of total neuronal soma area was observed at 20 mg/kg. Cholinergic neurons were unaffected. Fetal evaluations revealed no significant external, visceral, or skeletal abnormalities attributable to rosuvastatin exposure. These findings suggest that rosuvastatin induces selective vulnerability of nitrergic neurons involved in nitric oxide-mediated adaptations to physiological changes during gestation, likely influenced by the tested exposure levels. Although no maternal or fetal toxicity was observed, alterations in the enteric nervous system underscore the need for further studies to investigate the underlying mechanisms and their potential implications for reproductive health.
Collapse
Affiliation(s)
- Diego Dos Santos Reis
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde (PPGCAPS), Universidade Estadual de Goiás, Anápolis, Brazil; Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Universidade Estadual de Goiás, Anápolis, Brazil.
| | - Graziele Alícia Batista Caixeta
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde (PPGCAPS), Universidade Estadual de Goiás, Anápolis, Brazil; Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Universidade Estadual de Goiás, Anápolis, Brazil.
| | - João Pedro Monteiro Barbosa
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Universidade Estadual de Goiás, Anápolis, Brazil.
| | | | | | | | - Ricardo Silva Tavares
- Programa de Pós-Graduação em Ciência Ambientais e Saúde. Pontifícia Universidade Católica de Goiás, Goiânia, Brazil.
| | | | - Clayson Moura Gomes
- Programa de Pós-Graduação em Ciência Ambientais e Saúde. Pontifícia Universidade Católica de Goiás, Goiânia, Brazil; Escola de Ciências Médicas e da Vida. Pontifícia Universidade Católica de Goiás. Goiânia, Brazil.
| | - Wilson de Melo Cruvinel
- Programa de Pós-Graduação em Ciência Ambientais e Saúde. Pontifícia Universidade Católica de Goiás, Goiânia, Brazil; Escola de Ciências Médicas e da Vida. Pontifícia Universidade Católica de Goiás. Goiânia, Brazil.
| | | | - Vanessa Cristiane Santana Amaral
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde (PPGCAPS), Universidade Estadual de Goiás, Anápolis, Brazil; Laboratório de Farmacologia e Toxicologia de Produtos Naturais e Sintéticos, Universidade Estadual de Goiás, Anápolis, Brazil.
| |
Collapse
|
3
|
da Silva AS, de Mello TF, Fagá HFE, Knorst JK, Silva FRMB, Leite GAA. Female Mice Exposed to Pyriproxyfen Since Prepuberty Showed Reproductive Impairment During Sexual Maturity and Increased Fetal Death in Their Offspring. ENVIRONMENTAL TOXICOLOGY 2024; 39:5019-5038. [PMID: 39037111 DOI: 10.1002/tox.24374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Abstract
Pyriproxyfen (PPF) is an insecticide used in agriculture, which is approved for use in drinking water tanks for human consumption. However, some studies indicate that it may act as an endocrine disruptor and affect nontarget organisms. This study aimed to evaluate the effects of PPF on reproduction and general health status in female mice exposed from pre-puberty to adulthood. In the first experiment, females were treated by gavage from postnatal day (PND) 23 to (PND) 75 and were distributed into three experimental groups: control (vehicle), PPF 0.1 mg/kg, and PPF 1 mg/kg. Female mice were assessed for the age of puberty onset, body mass, water and food consumption, and the estrous cycle. On PDN 75, a subgroup was euthanized, when vital and reproductive organs were collected and weighed. The thyroid, ovary, and uterus were evaluated for histomorphometry. The other subgroup was assessed in relation to reproductive performance and fetal parameters. In a second experiment, the uterotrophic assay was performed with juvenile females (PND 18) using doses of 0.01, 0.1, or 1 mg/kg of PPF. PPF treatment reduced thyroid mass and increased liver mass. Furthermore, there was an increase in ovarian interstitial tissue and, in the uterus, a decrease in the thickness of the endometrial stroma with reduced content of collagen fibers. There was also a reduction of 30% in pregnancy rate in the treated groups and an increase in the frequency of fetal death. This study suggests that, based on this experimental model, the insecticide may pose a reproductive risk for females chronically exposed to the substance from the pre-pubertal period until adulthood. These results raise concerns about prolonged exposure of women to the same compound.
Collapse
Affiliation(s)
- Alice Santos da Silva
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Tainara Fernandes de Mello
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Programa de Pós-graduação em Biologia Celular e Do Desenvolvimento, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Henrique Frederico Enz Fagá
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jennyfer Karen Knorst
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
4
|
Omolaoye TS, Halabi MO, Mubarak M, Cyril AC, Duvuru R, Radhakrishnan R, Du Plessis SS. Statins and Male Fertility: Is There a Cause for Concern? TOXICS 2022; 10:627. [PMID: 36287907 PMCID: PMC9607778 DOI: 10.3390/toxics10100627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 05/06/2023]
Abstract
The well-known 3-hydroxyl 3-methyl glutaryl-Coenzyme A reductase inhibitors, called statins, have been the main medication used in the treatment of hypercholesterolemia and some cases of cardiovascular diseases. The effectiveness of this drug in controlling cholesterol production is impeccable, however, patients often complain of a variety of side effects, such as myalgia, muscle atrophy, and in some cases, rhabdomyolysis. Not only has the use of statins caused the aforementioned side effects, but they are also shown to cause testicular discomfort, erectile dysfunction, altered semen parameters, and modified steroid hormone production. These reported adverse effects on male fertility are not generally agreed upon, as some have shown the use to be beneficial. Hence, this makes the aftermath effect of statin use on male fertility debatable and controversial. The negative effects have been associated with imbalanced or reduced steroid hormones, which are necessary for proper spermatogenesis and other sexual functions. Meanwhile, the beneficial effects are related to statin's anti-inflammatory and cardioprotective properties. These contradictory findings are in part due to the different age of users, concentrations of statins, the type and duration of treatment, and the underlying disease and/or comorbidities. Therefore, the current study aims to analyze the literature and gather evidence as to the effects of statin on male sexual health and reproductive parameters, and subsequently give recommendations for the direction of future studies.
Collapse
Affiliation(s)
- Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Mouhammad Omar Halabi
- School of Medicine, Royal College of Surgeons Ireland-Bahrain, Busaiteen 15503, Bahrain
| | - Maitha Mubarak
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Ruthwik Duvuru
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Stefan S. Du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, Cape Town P.O. Box 7505, South Africa
| |
Collapse
|
5
|
de Barros JWF, Villela E Silva P, da Silva GV, da Silva KP, Borges CDS, Mueller A, Valencise L, Pupo AS, Kempinas WDG. Rosuvastatin exposure in female Wistar rats alters uterine contractility and do not show evident (anti)estrogenic effects. Drug Chem Toxicol 2021; 45:2233-2245. [PMID: 33934680 DOI: 10.1080/01480545.2021.1919139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Statins are 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitor drugs that lead to serum-cholesterol-lowering effects. Rosuvastatin, a third-generation statin, has shown better results in reducing cholesterol concentrations when compared to other widely prescribed statins. Recent studies by our group reported that rosuvastatin impairs reproductive function in rats possibly by disrupting the reproductive-endocrine axis. In this study, we evaluated whether rosuvastatin presents estrogenic or antiestrogenic effects, by an in vivo uterotrophic assay in rats, and investigated the direct effect of this drug upon rat uterine tissue contractility both in non-gravid and gravid periods. Rosuvastatin exposure in vivo at doses of 0 (control), 3, and 10 mg/kg/d was not associated with estrogenic or antiestrogenic effects on uterine tissue. However, in vivo (doses of 0, 3, and 10 mg/kg/d) and ex vivo (concentrations of 0, 1, 10, and 100 µg/mL) exposures to this drug were related to alterations in uterine basal contraction pattern. Furthermore, in vivo and ex vivo rosuvastatin exposures potentially modulate the action of uterine contraction inducers carbachol, norepinephrine, and prostaglandin E2. Thus, rosuvastatin can affect uterine physiology not necessarily by an endocrine mechanism related to the estrogen signaling, but possibly by its pleiotropic effects, with indirect tissue and cellular interactions, since in vivo and ex vivo exposures of uterine fragments to rosuvastatin presented different responses in uterine contractile parameters, which require further studies upon the precise mechanism of action of this drug in female reproductive function.
Collapse
Affiliation(s)
- Jorge Willian Franco de Barros
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Patrícia Villela E Silva
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gustavo Venâncio da Silva
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Katiussia Pinho da Silva
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, Brazil
| | - Cibele Dos Santos Borges
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - André Mueller
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, Brazil
| | - Lethícia Valencise
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, Brazil
| | - Wilma De Grava Kempinas
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
6
|
Barros JWF, Tonon KS, Borges CS, Silva PV, Lozano AFQ, Pacheco TL, Anselmo-Franci JA, Kempinas WG. Short- and long-term effects on reproductive parameters of female Wistar rats after exposure to rosuvastatin starting in pre-puberty. Curr Res Toxicol 2020; 1:149-160. [PMID: 34345844 PMCID: PMC8320644 DOI: 10.1016/j.crtox.2020.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Rosuvastatin is a lipid-lowering drug that inhibits cholesterol biosynthesis. The exposure of female rats from pre-puberty to adulthood leads to alterations in estrous cycle, sexual behavior, serum prolactin levels, and weights of liver, pituitary and placenta. No alterations were found in pubertal timing, uterine and ovarian morphology, serum levels of LH, FSH, testosterone and progesterone, and reproductive performance. The alterations seem to be due disruption of hormonal signaling and to the pleiotropic effects of statins.
Statins are a class of drugs that act lowering lipid levels by inhibiting cholesterol biosynthesis. Additionally, statins can act by “pleiotropic effects”, related to the inhibition of synthesis of the other mevalonate pathway products. Rosuvastatin is a third-generation statin and has shown better results in reducing cholesterol concentrations when compared to other statins. Recent studies suggest that rosuvastatin may act as an endocrine disruptor that potentially damages the hormonal axis and, consequently reproductive development and function of male rats. However, the effects of rosuvastatin exposure on rat female reproductive parameters remain unknown. In this study female rats were exposed to rosuvastatin at the doses of 0 (control), 3, or 10 mg/Kg.bw−1/day from pre-puberty to adulthood. No alterations in the female reproductive parameters were observed at a dose of 3 mg/Kg.bw−1. However, females exposed to 10 mg/Kg.bw−1 exhibited shorter estrous cycles, altered copulatory behavior, decreased serum prolactin level, and alterations in the liver, pituitary and placental weights, parameters to some extent influenced by the reproductive hormonal axis signaling pathway. On the other hand, pubertal onset, reproductive hormone levels, fertility, and histological parameters of the ovary, uterus, and placenta were unaltered by exposure to both doses of this statin. Thus, rosuvastatin exposure, at the higher dose, altered the reproductive function of female rats, probably due to the pleiotropic effects of this statin. Additional studies on the effects of this statin on female reproductive function and development are encouraged to better characterize its mode of action.
Collapse
Affiliation(s)
- Jorge W F Barros
- Graduate Program in Cell and Structural Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Karolina S Tonon
- Department of Structural and Functional Biology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, SP, Brazil
| | - Cibele S Borges
- Department of Structural and Functional Biology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, SP, Brazil
| | - Patrícia V Silva
- Department of Structural and Functional Biology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, SP, Brazil
| | - Ana F Q Lozano
- Graduate Program in Cell and Structural Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tainá L Pacheco
- Graduate Program in Cell and Structural Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Janete A Anselmo-Franci
- Department of Morphology, Stomatology and Physiology, Dental School of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Wilma G Kempinas
- Department of Structural and Functional Biology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, SP, Brazil
| |
Collapse
|
7
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|