1
|
Liang P, Peng M, Tao J, Wang B, Wei J, Lin L, Cheng B, Xiong S, Li J, Li C, Yu Z, Li C, Wang J, Li H, Chen Z, Fan J, Liang W, He J. Development of a genome atlas for discriminating benign, preinvasive, and invasive lung nodules. MedComm (Beijing) 2024; 5:e644. [PMID: 39036344 PMCID: PMC11258453 DOI: 10.1002/mco2.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/23/2024] Open
Abstract
To tackle misdiagnosis in lung cancer screening with low-dose computed tomography (LDCT), we aimed to compile a genome atlas for differentiating benign, preinvasive, and invasive lung nodules and characterize their molecular pathogenesis. We collected 432 lung nodule tissue samples from Chinese patients, spanning benign, atypical adenomatous hyperplasia (AAH), adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and invasive adenocarcinoma (IA). We performed comprehensive sequencing, examining somatic variants, gene expressions, and methylation levels. Our findings uncovered EGFR and TP53 mutations as key drivers in - early lung cancer development, with EGFR mutation frequency increasing with disease progression. Both EGFR mutations and EGF/EGFR hypo-methylation activated the EGFR pathway, fueling cancer growth. Transcriptome analysis identified four lung nodule subtypes (G1-4) with distinct molecular features and immune cell infiltrations: EGFR-driven G1, EGFR/TP53 co-mutation G2, inflamed G3, stem-like G4. Estrogen/androgen response was associated with the EGFR pathway, proposing a new therapy combining tyrosine kinase inhibitors with antiestrogens. Preinvasive nodules exhibited stem cell pathway enrichment, potentially hindering invasion. Epigenetic regulation of various genes was essential for lung cancer initiation and development. This study provides insights into the molecular mechanism of neoplastic progression and identifies potential diagnostic biomarkers and therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Peng Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Minhua Peng
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinsheng Tao
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Bo Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Jinwang Wei
- Department of Data ScienceGenomicare Biotechnology (Shanghai) Co., Ltd.ShanghaiChina
- Department of Data ScienceShanghai CreateCured Biotechnology Co., Ltd.ShanghaiChina
| | - Lixuan Lin
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Bo Cheng
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Shan Xiong
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianfu Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Caichen Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Ziwen Yu
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Chunyan Li
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jun Wang
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Hui Li
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
| | - Zhiwei Chen
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- AnchorDx Inc.FremontCaliforniaUSA
| | - Jian‐Bing Fan
- AnchorDx Medical Co., LtdGuangzhouGuangdongChina
- Department of PathologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| | - Jianxing He
- Department of Thoracic Surgery and Oncologythe First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseGuangzhouGuangdongChina
| |
Collapse
|
2
|
Ren Y, Zhang P, Li L, Wang M, Hu H, Shen Y, Xu P, Wu Q, Li F. Hyper-methylation and DNMT3A mediated LTC4S downregulation promoted lung adenocarcinoma tumorigenesis via mTORC1 signaling pathway. Heliyon 2024; 10:e33203. [PMID: 39027522 PMCID: PMC11255598 DOI: 10.1016/j.heliyon.2024.e33203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Lung adenocarcinoma is a malignancy characterized by high mortality rates and unfavorable prognosis. However, the role of Leukotriene C4 Synthase (LTC4S) in lung cancer remains uninvestigated. Methods The expression and prognostic value of LTC4S in LUAD were analyzed using the GEPIA online database. Subsequently, the function of LTC4S in lung cancer cells was examined through gain-of function experiments, using assays to evaluate tumor malignant behavior. Subcutaneous xenograft experiments in vivo was used for investigating the functions of LTC4S. Then, tumor hallmark pathways were analyzed by GSEA. Western blot assay was used to validate the impact of LTC4S on mTORC1 pathway. Finally, the correlation of mRNA and methylation of LTC4S were analyzed by cBioPortal. qRT-PCR, ChIP-qPCR and ChIP-Atlas were used to verify the regulation factors of LTC4S low expression in LUAD cells. Results LTC4S presented significant decreased expression and favorable prognostic significance in LUAD. LTC4S was correlated with clinical stages in LUAD, which showed decreased expression gradually and significantly along with TNM stages. LTC4S-co-expressed genes were closely related to Ras signaling pathway, and MAPK signaling pathway. Overexpression of LTC4S inhibited cancer malignant phenotype and tumor growth in vitro and vivo. GSEA analysis and Western blot assay suggested low expression of LTC4S activated mTORC1 signaling pathway in LUAD. Moreover, the DNA methylation level of LTC4S in LUAD tissue was markedly elevated compared to normal tissue. The hypermethylation of the LTC4S promoter by DNMT3A leads to the decreased expression of LTC4S in LUAD. Conclusions In conclusion, low expression of LTC4S serves as an unfavorable prognostic marker and the critical function of LTC4S in controlling the progression of LUAD. This highlights the promise for exploring the clinical benefits of manipulating LTC4S in LUAD targeted therapies.
Collapse
Affiliation(s)
- Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Liqun Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Mei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Huiliang Hu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yidan Shen
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| |
Collapse
|
3
|
Chen J, Zhang M, Zou H, Aniagu S, Jiang Y, Chen T. PM2.5 induces mitochondrial dysfunction via AHR-mediated cyp1a1 overexpression during zebrafish heart development. Toxicology 2023; 487:153466. [PMID: 36841371 DOI: 10.1016/j.tox.2023.153466] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Accumulating evidence suggests an association between maternal PM2.5 exposure and congenital heart diseases, but the underlying mechanisms remain unclear. We previously reported that PM2.5 induces cardiac malformations in zebrafish embryos via the aryl hydrocarbon receptor (AHR) pathway, which mediates the generation of reactive oxygen species (ROS). Since mitochondria are not only the main source of ROS but also sensitive to oxidative damage, we hypothesize that mitochondria may play an important role in the cardiac developmental toxicity of PM2.5. In this study, we demonstrated that extractable organic matter (EOM) from PM2.5 caused mitochondrial dysfunction in the heart of zebrafish embryos, including increased mitochondrial ROS (mtROS) levels, mitochondrial permeability transition pore (mPTP) opening, mitochondrial membrane potential (MMP) collapse, reduced mitochondrial ATP levels, and decreased expression levels of the mRNAs encoding mitochondrial proteins, which were attenuated by either pharmacological or genetic inhibition of AHR. We further demonstrated that improving mitochondrial function by inhibiting mPTP opening with Cyclosporin A suppressed the EOM-induced intracellular ROS and mtROS generation, MMP collapse, intrinsic apoptosis, and heart defects. Moreover, the EOM-induced mPTP opening was counteracted by inhibiting mtROS with mitoquinone mesylate (MitoQ). Supplementation with MitoQ also attenuated the EOM-induced mitochondrial dysfunction, apoptosis and heart defects. Additionally, knockdown of cyp1a1 but not cyp1b1 attenuated the EOM-induced mtROS generation and heart defects. Taken together, this study indicates that PM2.5 triggers mtROS generation via AHR-mediated cyp1a1 overexpression, which then causes mPTP opening and mitochondrial dysfunction, leading to apoptosis and heart defects.
Collapse
Affiliation(s)
- Jin Chen
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Mingxuan Zhang
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hongmei Zou
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Suzhou Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Aberrant Methylation of SLIT2 Gene in Plasma Cell-Free DNA of Non-Small Cell Lung Cancer Patients. Cancers (Basel) 2022; 14:cancers14020296. [PMID: 35053460 PMCID: PMC8773699 DOI: 10.3390/cancers14020296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Despite significant advances in the detection, prevention, and treatment of lung cancer, the prognosis of the patients is still very poor due in part to micrometastasis of cancer cells to surrounding tissues at the time of diagnosis. Therefore, identifying biomarkers for early detection of lung cancer is very important for prolonging the lifespan of patients with lung cancer. The methylation statuses of SLIT1, SLIT2, SLIT3 genes were analyzed in bronchial washing, bronchial biopsy, sputum, tumor and matched normal tissues, or plasma samples obtained from a total of 208 non-small cell lung cancer (NSCLC) patients and 121 cancer-free patients to understand the feasibility of the genes as biomarkers for early detection and survival prediction of NSCLC. The present study suggests that aberrant methylation of SLIT2 in plasma cell-free DNA might be a potential biomarker for the early detection and prognosis prediction of NSCLC patient. Abstract This study aimed to understand aberrant methylation of SLITs genes as a biomarker for the early detection and prognosis prediction of non-small cell lung cancer (NSCLC). Methylation levels of SLITs were determined using the Infinium HumanMethylation450 BeadChip or pyrosequencing. Five CpGs at the CpG island of SLIT1, SLIT2 or SLIT3 genes were significantly (Bonferroni corrected p < 0.05) hypermethylated in tumor tissues obtained from 42 NSCLC patients than in matched normal tissues. Methylation levels of these CpGs did not differ significantly between bronchial washings obtained from 76 NSCLC patients and 60 cancer-free patients. However, methylation levels of SLIT2 gene were significantly higher in plasma cell-free DNA of 72 NSCLC patients than in that of 61 cancer-free patients (p = 0.001, Wilcoxon rank sum test). Prediction of NSCLC using SLIT2 methylation was achieved with a sensitivity of 73.7% and a specificity of 61.9% in a plasma test dataset (N = 40). A Cox proportional hazards model showed that SLIT2 hypermethylation in plasma cell-free DNA was significantly associated with poor recurrence-free survival (hazards ratio = 2.19, 95% confidence interval = 1.21–4.36, p = 0.01). The present study suggests that aberrant methylation of SLIT2 in plasma cell-free DNA is a valuable biomarker for the early detection of NSCLC and prediction of recurrence-free survival. However, further research is needed with larger sample size to confirm results.
Collapse
|
5
|
Jin SW, Im JS, Park JH, Kim HG, Lee GH, Kim SJ, Kwack SJ, Kim KB, Chung KH, Lee BM, Kacew S, Jeong HG, Kim HS. Effects of tobacco compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on the expression of epigenetically regulated genes in lung carcinogenesis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:1004-1019. [PMID: 34459362 DOI: 10.1080/15287394.2021.1965059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cigarette smoking is a major cause of lung cancer. Although tobacco smoking-induced genotoxicity has been well established, there is apparent lack of abundance functional epigenetic effects reported On cigarette smoke-induced lung carcinogenesis. The aim of this study was to determine effects of intratracheal administration of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) utilizing target gene expression DNA methylation patterns in lung tissues of mice following twice weekly for 8 weeks treatment. An unbiased approach where genomic regions was undertaken to assess early methylation changes within mouse pulmonary tissues. A methylated-CpG island recovery assay (MIRA) was performed to map the DNA methylome in lung tissues, with the position of methylated DNA determined using a Genome Analyzer (MIRA-SEQ). Alterations in epigenetic-regulated target genes were confirmed with quantitative reverse transcription-PCR, which revealed 35 differentially hypermethylated genes including Cdkn1C, Hsf4, Hnf1a, Cdx1, and Hoxa5 and 30 differentially hypomethylated genes including Ddx4, Piwi1, Mdm2, and Pce1 in NNK-exposed lung tissue compared with controls. The main pathway of these genes for mediating biological information was analyzed using the Kyoto Encyclopedia of Genes and Genomes database. Among them, Rssf1 and Mdm2 were closely associated with NNK-induced lung carcinogenesis. Taken together, our data provide valuable resources for detecting cigarette smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Sun Woo Jin
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jong Seung Im
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hyeon Park
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Gyun Kim
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Se Jong Kim
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Jun Kwack
- Department Of Biochemistry And Health Science, Changwon National University, Gyeongnam Republic of Korea
| | - Kyu-Bong Kim
- College Of Pharmacy, Dankook University, Chungnam, Republic of Korea
| | - Kyu Hyuck Chung
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byung Mu Lee
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University Of Ottawa, Ottawa, ON, Canada
| | - Hye Gwang Jeong
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Sik Kim
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Determination of Genetic and Epigenetic Modifications-Related Prognostic Biomarkers of Breast Cancer: Genome High-Throughput Data Analysis. JOURNAL OF ONCOLOGY 2021; 2021:2143362. [PMID: 34557230 PMCID: PMC8455195 DOI: 10.1155/2021/2143362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
The high heterogeneity of breast cancer (BRCA) makes it more challenging to interpret the genetic variation mechanisms involved in BRCA pathogenesis and prognosis. Areas with high DNA methylation (such as CpG islands) were accompanied by copy number variation (CNV), and these genomic variations affected the level of DNA methylation. In this study, we characterized intertumor heterogeneity and analyzed the effects of CNV on DNA methylation and gene expression. In addition, we performed a Genetic Set Enrichment Analysis (GSEA) to identify key pathways for changes between patients with low and high expression of genes. Our analysis found two key genes, namely, HPDL and SOX17. The protein expressed by HPDL is 4-hydroxyphenylpyruvate dioxygenase-like protein, which has dioxygenase activity. SOX17 is a transcription factor that can inhibit Wnt signaling, promote the degradation of activated CTNNB1, and participate in cell proliferation. Our analysis found that the CNV of HPDL and SOX17 is not only related to the patient's prognosis, but also related to gene methylation and expression levels affecting the patient's survival time. Among them, the high-methylation, low-expression HPDL and SOX17 showed poor prognosis. And the addition of two copies of SOX17 is associated with a lower survival rate, while a decrease in the copy number of HPDL also suggests a poor prognosis. This study provided an effective bioinformatics basis for further exploration of molecular mechanisms related to BRCA and assessment of patient prognosis, but the development of biomarkers for diagnosis and treatment still requires further clinical data validation.
Collapse
|
7
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
8
|
Paço A, de Bessa Garcia SA, Freitas R. Methylation in HOX Clusters and Its Applications in Cancer Therapy. Cells 2020; 9:cells9071613. [PMID: 32635388 PMCID: PMC7408435 DOI: 10.3390/cells9071613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
HOX genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior–posterior axis. In postembryonic life, HOX gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting HOX gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the HOX gene sequence or in HOX-associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient’s treatment. The methylation of some HOX genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Collapse
Affiliation(s)
- Ana Paço
- Centre Bio: Bioindustries, Biorefineries and Bioproducts, BLC3 Association—Technology and Innovation Campus, 3405-169 Oliveira do Hospital, Portugal;
| | | | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
9
|
Lee JD, Kim HY, Kang K, Jeong HG, Song MK, Tae IH, Lee SH, Kim HR, Lee K, Chae S, Hwang D, Kim S, Kim HS, Kim KB, Lee BM. Integration of transcriptomics, proteomics and metabolomics identifies biomarkers for pulmonary injury by polyhexamethylene guanidine phosphate (PHMG-p), a humidifier disinfectant, in rats. Arch Toxicol 2020; 94:887-909. [PMID: 32080758 DOI: 10.1007/s00204-020-02657-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p) was used as a humidifier disinfectant in Korea. PHMG induced severe pulmonary fibrosis in Koreans. The objective of this study was to elucidate mechanism of pulmonary toxicity caused by PHMG-p in rats using multi-omics analysis. Wistar rats were intratracheally instilled with PHMG-p by single (1.5 mg/kg) administration or 4-week (0.1 mg/kg, 2 times/week) repeated administration. Histopathologic examination was performed with hematoxylin and eosin staining. Alveolar macrophage aggregation and granulomatous inflammation were observed in rats treated with single dose of PHMG-p. Pulmonary fibrosis, chronic inflammation, bronchiol-alveolar fibrosis, and metaplasia of squamous cell were observed in repeated dose group. Next generation sequencing (NGS) was performed for transcriptome profiling after mRNA isolation from bronchiol-alveoli. Bronchiol-alveoli proteomic profiling was performed using an Orbitrap Q-exactive mass spectrometer. Serum and urinary metabolites were determined using 1H-NMR. Among 418 differentially expressed genes (DEGs) and 67 differentially expressed proteins (DEPs), changes of 16 mRNA levels were significantly correlated with changes of their protein levels in both single and repeated dose groups. Remarkable biological processes represented by both DEGs and DEPs were defense response, inflammatory response, response to stress, and immune response. Arginase 1 (Arg1) and lipocalin 2 (Lcn2) were identified to be major regulators for PHMG-p-induced pulmonary toxicity based on merged analysis using DEGs and DEPs. In metabolomics study, 52 metabolites (VIP > 0.5) were determined in serum and urine of single and repeated-dose groups. Glutamate and choline were selected as major metabolites. They were found to be major factors affecting inflammatory response in association with DEGs and DEPs. Arg1 and Lcn2 were suggested to be major gene and protein related to pulmonary damage by PHMG-p while serum or urinary glutamate and choline were endogenous metabolites related to pulmonary damage by PHMG-p.
Collapse
Affiliation(s)
- Jung Dae Lee
- Department of Pharmacy, Division of Toxicology, Sungkyunkwan University, 2066 Sebu-ro, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hyang Yeon Kim
- Toxicology, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, Chungnam, 31116, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Mi-Kyung Song
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicoloy, Jeonbuk, Republic of Korea
| | - In Hwan Tae
- Department of Pharmacy, Division of Toxicology, Sungkyunkwan University, 2066 Sebu-ro, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Su Hyun Lee
- Department of Pharmacy, Division of Toxicology, Sungkyunkwan University, 2066 Sebu-ro, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Hae Ri Kim
- Department of Pharmacy, Division of Toxicology, Sungkyunkwan University, 2066 Sebu-ro, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kyuhong Lee
- National Center for Efficacy Evaluation for Respiratory Disease Product, Korea Institute of Toxicoloy, Jeonbuk, Republic of Korea
| | - Sehyun Chae
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Hyung Sik Kim
- Department of Pharmacy, Division of Toxicology, Sungkyunkwan University, 2066 Sebu-ro, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kyu-Bong Kim
- Toxicology, College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan, Chungnam, 31116, Republic of Korea.
| | - Byung-Mu Lee
- Department of Pharmacy, Division of Toxicology, Sungkyunkwan University, 2066 Sebu-ro, Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|