1
|
Creed IF, Erratt KJ, Henley P, Tsimbiri PF, Bend JR, Shivoga WA, Trick CG. A geo-gender-based analysis of human health: The presence of cut flower farms can attenuate pesticide exposure in African communities, with women being the most vulnerable. J Glob Health 2024; 14:04064. [PMID: 39388685 PMCID: PMC11466503 DOI: 10.7189/jogh.14.04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Background The rapid expansion of the cut flower industry in Africa has led to pervasive use and potential exposure of pesticides, raising concerns for local communities. Whether the risks associated with pesticide applications are localised or have broader implications remains unclear. Methods We measured biomarkers of real and perceived pesticide exposure in two Kenyan communities: Naivasha, where the cut flower industry is present, and Mogotio, where the cut flower industry is absent. We measured real exposure by the percentage of acetylcholinesterase (AChE) inhibition and perceived exposure by assessing hair cortisol levels, a biomarker of stress. Additionally, we conducted a demographic survey to evaluate the health and socioeconomic status of participants, as well as their perceptions of pesticide risks associated with the cut flower industry. Results Perceived pesticide exposure was more common in Naivasha (n = 36, 56%) compared to Mogotio (n = 0, 0%), according to community surveys. However, Mogotio residents had significantly higher mean hair cortisol levels (mean (x̄) = 790 ng/g, standard deviation (SD) = 233) and percentage of AChE inhibition (x̄ = 28.5%, SD = 7.3) compared to Naivasha residents, who had lower mean hair cortisol levels (x̄ = 548 ng/g, SD = 187) and percentage of AChE inhibition (x̄ = 14.5%, SD = 10.1). Location (proximity to cut flower farms) and gender were significant factors influencing pesticide exposure, with individuals living outside the cut flower industrial complexes being at higher risk. Women in both communities were the most vulnerable demographic, showing significantly higher mean hair cortisol levels (x̄ = 646 ng/g, SD = 267.4) and percentage of AChE inhibition (x̄ = 22.5%, SD = 12.4) compared to men hair cortisol levels (x̄ = 558.2 ng/g, SD = 208.2) and percentage of AChE inhibition (x̄ = 10.4%, SD = 13.1). Conclusions A heightened awareness of the potential risks of pesticide exposure was widespread within cut flower industrial complexes. This may have led to a reduction in exposure of both workers and non-workers living within or close to these complexes. In contrast, communities living outside these complexes showed higher levels of exposure, possibly due to limited chemical awareness and a lack of precautionary measures. Despite this contrast between communities, women remained the most vulnerable members, likely due to their socioeconomic roles in African society. Monitoring women's pesticide exposure is crucial for providing an early warning system for community exposure.
Collapse
Affiliation(s)
- Irena F Creed
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kevin J Erratt
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Phaedra Henley
- Center for One Health, University of Global Health Equity, Butaro, Rwanda
| | - Pamela F Tsimbiri
- Department of Reproductive Health, Faculty of Health Sciences, Egerton University, Egerton, Kenya
| | - John R Bend
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, Ontario, Canada
| | - William A. Shivoga
- Department of Biological Sciences, Centre of Excellence for Water and Environment Resources Management (CEWERM), Kakamega, Kenya
| | - Charles G Trick
- Department of Health & Society, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Pilsova Z, Pilsova A, Zelenkova N, Klusackova B, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction. Front Endocrinol (Lausanne) 2024; 15:1427069. [PMID: 39324123 PMCID: PMC11423738 DOI: 10.3389/fendo.2024.1427069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that belongs to the group of gasotransmitters along with nitric oxide (NO) and carbon monoxide (CO). H2S plays a pivotal role in male reproductive processes. It is produced in various tissues and cells of the male reproductive system, including testicular tissue, Leydig and Sertoli cells, epididymis, seminal plasma, prostate, penile tissues, and sperm cells. This review aims to summarize the knowledge about the presence and effects of H2S in male reproductive tissues and outline possible therapeutic strategies in pathological conditions related to male fertility, e. g. spermatogenetic disorders and erectile dysfunction (ED). For instance, H2S supports spermatogenesis by maintaining the integrity of the blood-testicular barrier (BTB), stimulating testosterone production, and providing cytoprotective effects. In spermatozoa, H2S modulates sperm motility, promotes sperm maturation, capacitation, and acrosome reaction, and has significant cytoprotective effects. Given its vasorelaxant effects, it supports the erection of penile tissue. These findings suggest the importance and therapeutic potential of H2S in male reproduction, paving the way for further research and potential clinical applications.
Collapse
Affiliation(s)
- Zuzana Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Czechia
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
3
|
Nguyen DK, Nguyen TP, Li YR, Ohme-Takagi M, Liu ZH, Ly TT, Nguyen VA, Trinh NN, Huang HJ. Comparative study of two indoor microbial volatile pollutants, 2-Methyl-1-butanol and 3-Methyl-1-butanol, on growth and antioxidant system of rice (Oryza sativa) seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116055. [PMID: 38340597 DOI: 10.1016/j.ecoenv.2024.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.
Collapse
Affiliation(s)
- Diem-Kieu Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Rong Li
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Zin-Huang Liu
- Graduate Program in Translational Agricultural Sciences, NCKU and Academia Sinica, Taiwan
| | - Thach-Thao Ly
- Graduate Program in Translational Agricultural Sciences, NCKU and Academia Sinica, Taiwan
| | - Van-Anh Nguyen
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Intellectual Property Office of Vietnam, Thanh Xuan District, Ha Noi, Vietnam
| | - Ngoc-Nam Trinh
- Industrial University of Ho Chi Minh City, Go Vap District, Ho Chi Minh, Vietnam
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan; Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan; Graduate Program in Translational Agricultural Sciences, NCKU and Academia Sinica, Taiwan.
| |
Collapse
|
4
|
MOHAMMED F, ABDULGHAFOR AHMED M, M. ORAİBİ H. Health Risk Assessment of Some Heavy Metals in Lipsticks Sold in Local Markets in Iraq. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2023. [DOI: 10.18596/jotcsa.1154686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Heavy metals found in cosmetics are a safety threat to the health of consumers. Therefore, in this study, we evaluated the levels of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), and arsenic (As) in lipstick makeup. The level of heavy metals in lipstick was discovered by using an analytical technique with high selectivity and sensitivity, namely atomic absorption spectrometry. Twenty lipsticks were selected from the same brands, yet differing in price. Ten original (expensive) and ten knockoff (cheap) lipsticks were chosen from shops in Diyala, Iraq. The detection-limit (LOD) was in between 0.01 and 0.1, the quantification-limit (LOQ) was within 0.03 and 0.33, the recovery values (Rec.%) ranged from 100.17% to 101.1%, the RE values were 0.81%, and the RSD values were 1.33%. The results also revealed that the levels of metals are in the order of Pb > Cd > Zn > Cu > As > Cr. However, the levels of heavy metals that were estimated in this study were less than the permissible limit set by the executive authorities, so there seems to be no concern associated with these heavy metals. However, the daily and frequent use of lipstick by women exposes them to low levels of toxic metals as these metals accumulate over time and pose adverse effects on the health of the users. The results of the hazard quotient (HQ) and health risk index (HI) indicate there was no harmful effect on human health related to heavy metals present in lipstick. Whereas the results of the biological activity of the samples indicated that there was no bacterial growth in expensive samples, cheap samples were contaminated with some types of organisms; this indicates poor quality.
Collapse
Affiliation(s)
- Fatima MOHAMMED
- Middle Technical University – Technical Institute – Baqubah – Department of Community Health Technique
| | - Maryam ABDULGHAFOR AHMED
- Renewable Energy Sciences Department, College of Energy & Environmental Science, Al-Karkh University of Science
| | - Hadeel M. ORAİBİ
- Department of Biology, Collage of science, University of Diyala, Iraq
| |
Collapse
|
5
|
Macedo GE, Vieira PDB, Rodrigues NR, Gomes KK, Rodrigues JF, Franco JL, Posser T. Effect of fungal indoor air pollutant 1-octen-3-ol on levels of reactive oxygen species and nitric oxide as well as dehydrogenases activities in drosophila melanogaster males. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:573-585. [PMID: 35354383 DOI: 10.1080/15287394.2022.2054887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal pollution of indoor environments contributes to several allergic symptoms and represents a public health problem. It is well-established that 1-octen-3-ol, also known as mushroom alcohol, is a fungal volatile organic compound (VOC) commonly found in damp indoor spaces and responsible for the typical musty odor. Previously it was reported that exposure to 1-octen-3-ol induced inflammations and disrupted mitochondrial morphology and bioenergetic rate in Drosophila melanogaster. The aim of this study was to examine the influence of 1-octen-3-ol on dehydrogenase activity, apoptotic biomarkers, levels of nitric oxide (NO) and reactive oxygen species (ROS), as well as antioxidant enzymes activities. D. melanogaster flies were exposed to an atmosphere containing 1-octen-3-ol (2.5 or ∞l/L) for 24 hr. Data demonstrated that 1-octen-3-ol decreased dehydrogenases activity and NO levels but increased ROS levels accompanied by stimulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities without altering caspase 3/7 activation. These findings indicate that adverse mitochondrial activity effects following exposure of D. melanogaster to 1-octen-3-ol, a fungal VOC, may be attributed to oxidant stress. The underlying mechanisms involved in adverse consequences of indoor fungal exposure appear to be related to necrotic but not apoptotic mechanisms. The adverse consequences were sex-dependent with males displaying higher sensitivity to 1-octen-3-ol. Based upon on the fact that the fly genome shares nearly 75% of disease-related genes to human exposure to this fungus may explain the adverse human responses to mold especially for males.
Collapse
Affiliation(s)
- Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Patrícia de Brum Vieira
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jéssica Ferreira Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar em Biotecnologia - CIPBIOTEC, Universidade Federal do Pampa, Campus São Gabriel, São Gabriel, Brazil
| |
Collapse
|
6
|
|
7
|
Matlin SA, Krief A, Hopf H, Mehta G. Re-imagining Priorities for Chemistry: A Central Science for "Freedom from Fear and Want". Angew Chem Int Ed Engl 2021; 60:25610-25623. [PMID: 34704655 DOI: 10.1002/anie.202108067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Indexed: 11/10/2022]
Abstract
Human security, defined as "freedom from want and fear and freedom to live in dignity", provides an overarching concept to address threats to human security dimensions such as health, food, economics, the environment and sustainable development, while placing the individual at the centre of attention. Chemistry is central to addressing these challenges, but surprisingly its role and contributions to human security have hitherto not been explicitly set out. This article situates chemistry in the human security framework, highlighting areas where chemistry knowledge, methods and products are vital. It underscores three complementary facets: 1) chemistry contributes to many dimensions of human security, but needs to do much more in the light of oncoming global challenges; 2) the human security framing illuminates areas where chemistry itself needs to adapt to contribute better, by intensification of current approaches and/or by building or strengthening chemistry tools, skills and competencies; and 3) repositioning as central to human security affords chemistry a powerful opportunity to refresh itself as a science for the benefit of society-and it will need to engage more directly and dynamically at the interface of science, society and policy in order to do so.
Collapse
Affiliation(s)
- Stephen A Matlin
- Institute of Global Health Innovation, Imperial College London, Faculty Building, South Kensington, London, SW7 2AZ, UK
| | - Alain Krief
- Department of Chemistry, University of Namur, Belgium
| | - Henning Hopf
- Institute of Organic Chemistry, Technical University of Braunschweig, Germany
| | | |
Collapse
|
8
|
Matlin SA, Krief A, Hopf H, Mehta G. Re‐imagining Priorities for Chemistry: A Central Science for “Freedom from Fear and Want”. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Stephen A. Matlin
- Institute of Global Health Innovation Imperial College London Faculty Building, South Kensington London SW7 2AZ UK
| | - Alain Krief
- Department of Chemistry University of Namur Belgium
| | - Henning Hopf
- Institute of Organic Chemistry Technical University of Braunschweig Germany
| | | |
Collapse
|
9
|
Kim M, Park HJ, Bae ON, Baek SH. Development and uncertainty estimation of cryogenic homogenization and static headspace–gas chromatography–mass spectrometry method for the simultaneous determination of twelve toxic volatiles in disposable menstrual products. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Kim HY, Lee JD, Kim JY, Lee JY, Bae ON, Choi YK, Baek E, Kang S, Min C, Seo K, Choi K, Lee BM, Kim KB. Risk assessment of volatile organic compounds (VOCs) detected in sanitary pads. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:678-695. [PMID: 31328663 DOI: 10.1080/15287394.2019.1642607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Disposable sanitary pads are a necessity for women's health, but safety concerns regarding the use of these products have created anxiety. The aim of this study was to conduct a risk assessment of 74 volatile organic compounds (VOCs), which were expected to be contained within sanitary pads. Of the 74 VOCs, 50 were found in sanitary pads retailed in Korea at concentrations ranging from 0.025 to 3548.09 µg/pad. In order to undertake a risk assessment of the VOCs, the toxicological database of these compounds in the United States Environmental Protection Agency (USEPA), Agency for Toxic Substances and Disease Registry (ATSDR), National Toxicology Program (NTP) and World Health Organization (WHO) was searched. Ethanol was found to exhibit the highest reference dose (RfD) while 1,2-dibromo-3-chloro-propane displayed the lowest RfD. Consequently, a worst-case exposure scenario was applied in this study. It was assumed that there was the use of 7.5 sanitary napkins/day for 7 days/month. In the case of panty liners or overnight sanitary napkins, the utilization of 90 panty liners/month or 21 overnight sanitary napkins/month was assumed, respectively. In addition, 43 kg, the body weight of 12 to 13-year-old young women, and 100% VOCs skin absorption were employed for risk assessment. The systemic exposure dose (SED) values were calculated ranging from 1.74 (1,1,2-trichloroethane) ng/kg/day to 144.4 (ethanol, absolute) µg/kg/day. Uncertainty factors (UFs) were applied ranging from 10 to 100,000 in accordance with the robustness of animal or human experiments. The margin of exposure (MOE) of 34 VOCs was more than 1 (acceptable MOE > 1). Applicable carcinogenic references reported that the cancer risk of five VOCs was below 10-6. Based on our findings, evidence indicates that the non-cancer and cancer risks associated with VOCs detected in sanitary pads currently used in South Korea do not pose an adverse health risk in women.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- a College of Pharmacy, Dankook University , Cheonan , Republic of Korea
| | - Jung Dae Lee
- b Division of Toxicology, College of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Ji-Young Kim
- a College of Pharmacy, Dankook University , Cheonan , Republic of Korea
| | - Joo Young Lee
- c BK21plus team, College of Pharmacy, The Catholic University of Korea , Bucheon , Republic of Korea
| | - Ok-Nam Bae
- d College of Pharmacy, Hanyang University , Ansan , South Korea
| | - Yong-Kyu Choi
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Eunji Baek
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Sejin Kang
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Chungsik Min
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Kyungwon Seo
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Kihwan Choi
- e Cosmetics Research Team, Pharmaceuticals and Medical Devices Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety , Osong , Republic of Korea
| | - Byung-Mu Lee
- b Division of Toxicology, College of Pharmacy, Sungkyunkwan University , Suwon , Republic of Korea
| | - Kyu-Bong Kim
- a College of Pharmacy, Dankook University , Cheonan , Republic of Korea
| |
Collapse
|
11
|
Park YJ, Kim MK, Kim HS, Lee BM. Risk assessment of lithium-ion battery explosion: chemical leakages. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 21:370-381. [PMID: 30977440 DOI: 10.1080/10937404.2019.1601815] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Use of lithium-ion batteries has raised safety issues owing to chemical leakages, overcharging, external heating, or explosions. A risk assessment was conducted for hydrofluoric acid (HF) and lithium hydroxide (LiOH) which potential might leak from lithium-ion batteries. The inhalation no-observed-adverse-effect-level (NOAEL) for HF was 0.75 mg/kg/d. When a lithium-ion battery explodes in a limited space, HF emissions amount to 10-100 ppm. Assuming the worst-case scenario, the conversion rate was calculated to be 81.8 mg/m3, and the average daily dose (ADD) was 19.5 mg/kg/d. Consequently, the margin of exposure (MOE = NOAEL/ADD) was 0.034, a value which constitutes an unsafe inhalation exposure for HF. Conversely, skin toxicity NOAEL for LiOH was 41.35 mg/kg/d-. This LiOH value reflects the amount of lithium in the lithium-ion battery, which is generated upon contact between water and the electrolyte. The quantity of lithium in a mobile phone is approximately 295 mg, and systemic exposure dose (SED) was 4.92 mg/kg/d. Accordingly, the MOE (NOAEL/SED) value was 8.41, and skin exposure of LiOH was deemed as safe for humans. However, it is important that Energy Storage System batteries still require safety measures and technologies for next-generation batteries, to prevent any potential explosions of lithium-ion batteries.
Collapse
Affiliation(s)
- Yoo Jung Park
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Min Kook Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung Mu Lee
- a Division of Toxicology, College of Pharmacy , Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|