1
|
Ren F, Li Y, Luo H, Gao S, Jiang S, Yang J, Rao C, Chen Y, Peng C. Extraction, detection, bioactivity, and product development of luteolin: A review. Heliyon 2024; 10:e41068. [PMID: 39759280 PMCID: PMC11700251 DOI: 10.1016/j.heliyon.2024.e41068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Luteolin is a kind of natural flavonoid, widely existing in a variety of plants, has been revealed to have a wide range of biological activities. In recent years, the research results of luteolin are abundant. Here we review the latest research results of luteolin in order to provide new ideas for further research and development of luteolin. In this paper, the focus of the search was published between 2010 and 2024 on the extraction and determination of luteolin, biological activities, and the development and application of luteolin products. A comprehensive search using the keyword "luteolin" was conducted in the PubMed, Web of Science and WIPO databases. Through the collection of related literature, this paper summarized a variety of extraction techniques of luteolin, including immersion extraction, solvent extraction, ultrasonic-assisted extraction, supercritical fluid extraction and so on. The determination methods include: thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), electrochemical method (ED) and so on. In addition, the biological activities of luteolin, including antioxidant, anti-inflammatory, anti-tumor, antibacterial, analgesic and so on, were described. And luteolin as the main component of the product is being gradually developed, and has been used in the field of food, medicine and cosmetics. This paper provides a reference for further study of luteolin.
Collapse
Affiliation(s)
- Fajian Ren
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Ying Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Hanyuan Luo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Song Gao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shanshan Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Jian Yang
- Chuan-chu UNITED INTERNATIONAL Engineering Co., LTD, Chengdu, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Cheng Peng
- State Key Laboratory of Traditional Chinese Medicine Resources in Southwest China, Chengdu, 611137, China
| |
Collapse
|
2
|
Santos PA, Uczay M, Pflüger P, Lobo LAC, Rott MB, Fontenla JA, Rodrigues Siqueira I, Pereira P. Toxicological assessment of the Achyrocline satureioides aqueous extract in the Caenorhabditis elegans alternative model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:730-751. [PMID: 38904345 DOI: 10.1080/15287394.2024.2368618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Achyrocline satureioides, popularly called "marcela" in Brazil, is used in traditional medicine in South America. A. satureioides, inflorescences are used for many conditions, including to minimize the Sars-Cov-2 symptoms. Therefore, the aim of this study was to determine the toxicity profile of A. satureioides aqueous extract (ASAE), using the Caenorhabditis elegans (C. elegans) alternative model. Survival, reproduction, development, and transgenerational assays were performed. The effects of ASAE were investigated under conditions of thermal stress and presence of oxidant hydrogen peroxide (H2O2). In addition, C. elegans strains containing high antioxidant enzyme levels and elevated lineages of daf-16, skn-1 and daf-2 regulatory pathways were examined. The ASAE LC50 value was found to be 77.3 ± 4 mg/ml. The concentration of ASAE 10 mg/ml (frequently used in humans) did not exhibit a significant reduction in worm survival at either the L1 or L4 stage, after 24 or 72 hr treatment. ASAE did not markedly alter the body area. In N2 strain, ASAE (10 or 25 mg/ml) reversed the damage initiated by H2O2. In addition, ASAE protected the damage produced by H2O2 in strains containing significant levels of sod-3, gst-4 and ctl - 1,2,3, suggesting modulation in these antioxidant systems by this plant extract. ASAE exposure activated daf-16 and skn-1 stress response transcriptional pathways independently of daf-2, even under extreme stress. Data suggest that ASAE, at the concentrations tested in C. elegans, exhibits a reliable toxicity profile, which may contribute to consideration for safe use in humans.
Collapse
Affiliation(s)
- Péterson Alves Santos
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana Uczay
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Pricila Pflüger
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Larissa Aline Carneiro Lobo
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jose Angel Fontenla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ionara Rodrigues Siqueira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pereira
- Postgraduate Program in Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
3
|
Ma X, Ren X, Zhang X, Griffin N, Liu H, Wang L. Rutin ameliorates perfluorooctanoic acid-induced testicular injury in mice by reducing oxidative stress and improving lipid metabolism. Drug Chem Toxicol 2023; 46:1223-1234. [PMID: 36373176 DOI: 10.1080/01480545.2022.2145483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
This study investigated the protective effect of rutin on reproductive and blood-testis barrier (BTB) damage induced by perfluorooctanoic acid (PFOA) exposure. In this study, male ICR mice were randomly divided into three groups, Ctrl group (ddH2O, 5 mL/kg), PFOA group (PFOA, 20 mg/kg/d, 5 mL/kg), PFOA + rutin group (PFOA, 20 mg/kg/d, 5 mL/kg; rutin, 20 mg/kg/d, 5 mL/kg). Mice were exposed to PFOA for 28 days by gavage once daily in the presence or absence of rutin. Histopathological observations demonstrated that rutin treatment during PFOA exposure can reduce structural damage to testis and epididymis such as atrophy of spermatogenic epithelium and stenosis of epididymal lumen, while increase in the number and layers of spermatogenic cells. Biochemical detection demonstrated that rutin can reduce 8-hydroxy-2'-desoxyguanosine (8-OHdG) concentration in the serum and testis tissues. Rutin can also ameliorate glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) content, and reduce malondialdehyde (MDA) and total cholesterol (TC) content in testis tissues. Biotin tracking immunofluorescence and transmission electron microscopy demonstrated that rutin can ameliorate BTB structural damage during PFOA exposure. Rutin ameliorated the stress expression of tight junction proteins occludin and claudin-11. In conclusion, our findings suggested that rutin has a degree of protection in reproductive and BTB damage, which could put forward a new perspective on the application of rutin to prevent reproductive damage.
Collapse
Affiliation(s)
- Xinzhuang Ma
- School of Public Health, Bengbu Medical College, Bengbu, PR China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
| | - Xijuan Ren
- School of Public Health, Bengbu Medical College, Bengbu, PR China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
| | - Xuemin Zhang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, PR China
| | - Nathan Griffin
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Hui Liu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, PR China
| | - Li Wang
- School of Public Health, Bengbu Medical College, Bengbu, PR China
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, PR China
| |
Collapse
|
4
|
Rezende GCD, Noronha RCR, Ortiz HC, do Nascimento LAS, das Neves SC, Ventura Said YL, Cardoso AL, de Mescouto VA, Vilela MLB, do Nascimento VA, Coelho HRS, Leite Kassuya CA, Pedroso TF, Salvador MJ, Oliveira RJ. Absence of maternal-fetal adverse effects of Alternanthera littoralis P. Beauv. following treatment during pregnancy in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:543-556. [PMID: 37340982 DOI: 10.1080/15287394.2023.2223624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Alternanthera littoralis P. Beauv is a plant native to Brazil that exhibits various beneficial activities including antioxidant, antibacterial, antifungal, antiprotozoal, anti-hyperalgesic, and anti-inflammatory properties. The aim of this study was to assess the impact of the ethanol extract of Alternanthera littoralis (EEAl) on reproductive outcomes, embryofetal development, and DNA integrity of pregnant female mice. Pregnant Swiss female mice were randomly assigned to three experimental groups (n = 10): controls were administered either 1% Tween 80 (vehicle), EEAl 100 mg/kg or EEAl 1000 mg/kg. Treatment was administered through gavage during the gestational period until day 18. On gestational days 16, 17, and 18, a peripheral blood sample from the tail vein was obtained for DNA integrity analysis (micronucleus test). After the last collection, animals were euthanized by cervical dislocation. Maternal organs and fetuses were collected, weighed, and subsequently analyzed. Reproductive outcome parameters were assessed by measurement of number of implants, live fetuses, and resorptions. Embryonic development was determined by adequacy of weight for gestational age as well as determination of external, visceral, and skeletal malformations. Data demonstrated that EEAl did not produce maternal toxicity at either dose associated with no marked alterations in any of the reproductive outcome parameters including implantation sites, live/dead fetuses ratio, fetal viability, post-implantation losses, resorptions, and resorption rate. However, EEAl 1000 group reduced embryofetal development by lowering placental weight. In addition, there was an increase in the frequency of external and skeletal malformations in the EEAl 1000 group, which could not be attributed to extract exposure as these values were within control levels. Based upon our findings, evidence indicates that the EEAl at the concentrations employed in our study may be considered safe for use during pregnancy and extracts of this plant show potential for development of phytomedicines to be used in pregnancy.
Collapse
Affiliation(s)
- Giovana Corbucci Danti Rezende
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Renata Coelho Rodrigues Noronha
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brasil
| | - Hudman Cunha Ortiz
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | | | - Silvia Cordeiro das Neves
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Yasmin Lany Ventura Said
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Adauto Lima Cardoso
- Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências Biológicas (ICB), Universidade Federal Do Pará (UFPA), Belém, Brasil
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará (UFPA), Belém, Brasil
- Laboratório Genômica Integrativa, Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu (IBB), Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brasil
| | | | - Marcelo Luiz Brandão Vilela
- Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Valter Aragão do Nascimento
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | - Henrique Rodrigues Scherer Coelho
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| | | | - Taise Fonseca Pedroso
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brasil
| | - Marcos José Salvador
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brasil
| | - Rodrigo Juliano Oliveira
- Centro de Estudos em Células-Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
- Programa de Pós-Graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brasil
| |
Collapse
|