1
|
Arcambal A, Septembre-Malaterre A, Pesnel S, Morel AL, Gasque P, Begue M, Slama Y. The Potential of Human Pulmonary Mesenchymal Stem Cells as Vectors for Radiosensitizing Metallic Nanoparticles: An In Vitro Study. Cancers (Basel) 2024; 16:3239. [PMID: 39335210 PMCID: PMC11430180 DOI: 10.3390/cancers16183239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metallic nanoparticles (NPs) exhibit interesting radiosensitizing effects, and finding a way to accurately deliver them appears to be crucial. Due to their tumor tropism, mesenchymal stem cells (MSCs) represent a strategic approach. Therefore, we aimed to evaluate the impact of core-shell Fe3O4@Au NPs on the functionality of human pulmonary MSCs (HPMSCs). METHODS/RESULTS The results showed that 100 µg/mL Fe3O4@Au NPs, accumulated in HPMSCs (revealed by Prussian blue staining), did not alter cell viability as assessed by cell counting, MTT, and LDH assays. However, caspase 9 and Bcl2 gene expression, evaluated by RT-qPCR, was regulated 72 h after exposure to the NPs. Moreover, the NPs also decreased proinflammatory cytokine/chemokine secretions, except for CXCL8 (ELISA). These modulations were associated with the downregulation of AMPK gene expression at 24 h. In contrast, the NPs did not modulate VEGF, PI3K, or PDGF gene expression. Nevertheless, a decrease in VEGF secretion was observed after 24 h of exposure to the NPs. Interestingly, the Fe3O4@Au NPs did not modulate Nrf2 gene expression, but they did regulate the expression of the genes encoding Nox4 and HMOX-1. Additionally, the NPs increased ROS production, suggesting a redox imbalance. CONCLUSIONS Finally, the Fe3O4@Au NPs did not affect the HPMSCs' viability or proangiogenic/tumorigenic markers. These findings are encouraging for investigating the effects of Fe3O4@Au NPs delivered by HPMSCs to tumor sites in combination with radiation.
Collapse
Affiliation(s)
- Angélique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Axelle Septembre-Malaterre
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Sabrina Pesnel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Anne-Laure Morel
- Torskal Nanosciences, 2 Rue Maxime Rivière, 97490 Sainte-Clotilde, Reunion Island, France
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
| | - Mickael Begue
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| | - Youssef Slama
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Sainte-Clotilde Clinic, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
- Unité de Recherche Etudes Pharmaco-Immunologiques (EPI), University of La Réunion, CHU of La Réunion, Felix Guyon Site, Allée des Topazes, SC11021, 97400 Saint-Denis, Reunion Island, France
- Department of Radiotherapy, Sainte-Clotilde Clinic, Clinifutur Group, 127 Route de Bois de Nèfles, 97400 Saint-Denis, Reunion Island, France
| |
Collapse
|
2
|
Zuo F, Zhu Y, Wu T, Li C, Liu Y, Wu X, Ma J, Zhang K, Ouyang H, Qiu X, He J. Titanium Dioxide Nanomaterials: Progress in Synthesis and Application in Drug Delivery. Pharmaceutics 2024; 16:1214. [PMID: 39339250 PMCID: PMC11434736 DOI: 10.3390/pharmaceutics16091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Recent developments in nanotechnology have provided efficient and promising methods for the treatment of diseases to achieve better therapeutic results and lower side effects. Titanium dioxide (TiO2) nanomaterials are emerging inorganic nanomaterials with excellent properties such as low toxicity and easy functionalization. TiO2 with special nanostructures can be used as delivery vehicles for drugs, genes and antigens for various therapeutic options. The exploration of TiO2-based drug delivery systems shows great promise for translating nanotechnology into clinical applications; Methods: Comprehensive data on titanium dioxide were collected from reputable online databases including PubMed, GreenMedical, Web of Science, Google Scholar, China National Knowledge Infrastructure Database, and National Intellectual Property Administration; Results: In this review, we discuss the synthesis pathways and functionalization strategies of TiO2. Recent advances of TiO2 as a drug delivery system, including sustained and controlled drug release delivery systems were introduced. Rigorous long-term systematic toxicity assessment is an extremely critical step in application to the clinic, and toxicity is still a problem that needs to be closely monitored; Conclusions: Despite the great progress made in TiO2-based smart systems, there is still a great potential for development. Future research may focus on developing dual-reaction delivery systems and single-reaction delivery systems like redox and enzyme reactions. Undertaking thorough in vivo investigations is necessary prior to initiating human clinical trials. The high versatility of these smart drug delivery systems will drive the development of novel nanomedicines for personalized treatment and diagnosis of many diseases with poor prognosis.
Collapse
Affiliation(s)
- Fanjiao Zuo
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yameng Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caixia Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiwei Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jinyue Ma
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kaili Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huizi Ouyang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xilong Qiu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun He
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
5
|
Ranpara A, LeBouf RF, Nurkiewicz TR, Yi J, Cumpston JL, Stefaniak AB. Multi-instrument assessment of fine and ultrafine titanium dioxide aerosols. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:1-22. [PMID: 36444639 PMCID: PMC10663951 DOI: 10.1080/15287394.2022.2150730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The measurement of fine (diameter: 100 nanometers-2.5 micrometers) and ultrafine (UF: < 100 nanometers) titanium dioxide (TiO2) particles is instrument dependent. Differences in measurements exist between toxicological and field investigations for the same exposure metric such as mass, number, or surface area because of variations in instruments used, operating parameters, or particle-size measurement ranges. Without appropriate comparison, instrument measurements create a disconnect between toxicological and field investigations for a given exposure metric. Our objective was to compare a variety of instruments including multiple metrics including mass, number, and surface area (SA) concentrations for assessing different concentrations of separately aerosolized fine and UF TiO2 particles. The instruments studied were (1) DustTrak™ DRX, (2) personal DataRAMs™ (PDR), (3) GRIMMTM, and (4) diffusion charger (DC). Two devices of each field-study instrument (DRX, PDR, GRIMM, and DC) were used to measure various metrics while adjusting for gravimetric mass concentrations of fine and UF TiO2 particles in controlled chamber tests. An analysis of variance (ANOVA) was used to apportion the variance to inter-instrument (between different instrument-types), inter-device (within instrument), and intra-device components. Performance of each instrument-device was calculated using root mean squared error compared to reference methods: close-faced cassette and gravimetric analysis for mass and scanning mobility particle sizer (SMPS) real-time monitoring for number and SA concentrations. Generally, inter-instrument variability accounted for the greatest (62.6% or more) source of variance for mass, and SA-based concentrations of fine and UF TiO2 particles. However, higher intra-device variability (53.7%) was observed for number concentrations measurements with fine particles compared to inter-instrument variability (40.8%). Inter-device variance range(0.5-5.5%) was similar for all exposure metrics. DRX performed better in measuring mass closer to gravimetric than PDRs for fine and UF TiO2. Number concentrations measured by GRIMMs and SA measurements by DCs were considerably (40.8-86.9%) different from the reference (SMPS) method for comparable size ranges of fine and UF TiO2. This information may serve to aid in interpreting assessments in risk models, epidemiologic studies, and development of occupational exposure limits, relating to health effect endpoints identified in toxicological studies considering similar instruments evaluated in this study.
Collapse
Affiliation(s)
- Anand Ranpara
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Ryan F. LeBouf
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jinghai Yi
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jared L. Cumpston
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B. Stefaniak
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
6
|
Li L, Dong R, Liu T, Yang Y, Chang H, Meng X, Deng Y, Wang Q, Zhao Y, Song G, Hu Y. Nano-titanium dioxide exposure and autophagy: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Ruoyun Dong
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Tao Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, PR China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yiman Zhao
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yunhua Hu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| |
Collapse
|
7
|
Zhou X, Jin W, Sun H, Li C, Jia J. Perturbation of autophagy: An intrinsic toxicity mechanism of nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153629. [PMID: 35131247 DOI: 10.1016/j.scitotenv.2022.153629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have been widely used for various purposes due to their unique physicochemical properties. Such widespread applications greatly increase the possibility of human exposure to NPs in various ways. Once entering the human body, NPs may interfere with cellular homeostasis and thus affect the physiological system. As a result, it is necessary to evaluate the potential disturbance of NPs to multiple cell functions, including autophagy. Autophagy is an important cell function to maintain cellular homeostasis, and minimizing the disturbance caused by NP exposures to autophagy is critical to nanosafety. Herein, we summarized the recent research progress in nanotoxicity with particular focuses on the perturbation of NPs to cell autophagy. The basic processes of autophagy and complex relationships between autophagy and major human diseases were further discussed to emphasize the importance of keeping autophagy under control. Moreover, the most recent advances on perturbation of different types of NPs to autophagy were also reviewed. Last but not least, we also discussed major research challenges and potential coping strategies and proposed a safe-by-design strategy towards safer applications of NPs.
Collapse
Affiliation(s)
- Xiaofei Zhou
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Weitao Jin
- College of Science & Technology, Hebei Agricultural University, Huanghua 061100, China
| | - Hainan Sun
- Shandong Vocational College of Light Industry, Zibo 255300, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Oliveira LV, de Souza GL, da Silva GR, Magalhães TEA, Freitas GAN, Turrioni AP, de Rezende Barbosa GL, Moura CCG. Biological parameters, discolouration and radiopacity of calcium silicate-based materials in a simulated model of partial pulpotomy. Int Endod J 2021; 54:2133-2144. [PMID: 34418112 DOI: 10.1111/iej.13616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
AIM To analyse the discolouration, radiopacity, pH and calcium ion release of Biodentine (BD), Bio-C repair (BCR) and Bio-C temp (BCT), as well as their biological effects on human dental pulp cells (hDPCs). METHODOLOGY Sixty-four extracted bovine incisors were prepared to simulate crown fractures with pulp exposure and open root apex. The roots were filled using a mixture of agar and blood (control), and BD, BCR or BCT were placed over this mixture. Colour assessment analyses of the samples were performed before and immediately after material insertion and repeated at 30 and 90 days, using a spectrophotometer. The colour change of each specimen was evaluated at the crown and calculated based on the CIELab colour space. Digital radiographs were acquired for radiopacity analysis. hDPCs were placed in contact with different dilutions of culture media previously exposed to such materials and tested for cell viability using the MTT assay. The pH and calcium ion release of all materials were measured after 24 h; the data were assessed using one-way analysis of variance (ANOVA). Cell viability was analysed by two-way ANOVA. Differences in colour parameters and wound-healing data were assessed by two-way repeated measures ANOVA (α = 0.05). Tukey's and Dunnett's tests were used to compare the experimental groups with the control group. RESULTS BCR had grater radiopacity and smaller colour alteration (ΔEab/ΔE00) than the other materials tested (p < .005; p < .001). No significant differences in pH were found amongst the tested materials (p > .05). BCT was associated with the largest release of calcium ions (p < .0001). BD had cell viability similar to that of the control at the lowest dilutions, and BCR was similar to that of the control, regardless of the dilution tested (p > .05). BCT had a lower percentage of viability than that of the control at all tested dilutions (p < .0001). Cell migration rates in BD and BCR were similar to those in the control group after 24 h and 48 h (p > .05), whilst BCT had larger voids than the control in both periods (p < .0001). CONCLUSIONS BCR, BCT and BD were associated with tooth discolouration. BCR had the lowest staining values, the highest radiopacity and viability greater than 80% hDPCs.
Collapse
Affiliation(s)
- Lilian Vieira Oliveira
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gabriela Leite de Souza
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Gisele Rodrigues da Silva
- Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | | - Ana Paula Turrioni
- Department of Pediatric Dentistry, School of Dentistry, Federal University of Uberlândia, Uberlândia, Brazil
| | | | | |
Collapse
|
9
|
Yu S, Wang F, Bi Y, Wang P, Zhang R, Bohatko-Naismith J, Zhang X, Wang H. Autophagy regulates the Wnt/GSK3β/β-catenin/cyclin D1 pathway in mesenchymal stem cells (MSCs) exposed to titanium dioxide nanoparticles (TiO 2NPs). Toxicol Rep 2020; 7:1216-1222. [PMID: 32995296 PMCID: PMC7502783 DOI: 10.1016/j.toxrep.2020.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023] Open
Abstract
The application of titanium dioxide nanoparticles (TiO2NPs) is on the increase, and so the number of studies dedicated to describing this material's biological effects. Previous studies have presented results indicating the controversial impact of TiO2NPs on cell fate regarding death and survival. We speculate that this may be due to focusing on each of the subject cells as an isolated individual. In this study, we made a difference by looking at the subject cells as an interrelated population. Specifically, we exposed mesenchymal stem cells (MSCs) to TiO2NPs and observed cell death and stimulation of proliferation among the cell population. Our data shows that the exposure to TiO2NPs initiated autophagy, which led to an increase in extracellular Wnt protein levels and increased Wnt/GSK3β/β-catenin/cyclin D1 signalling in the cell population. Autophagy inhibitor repressed the effects of TiO2NPs, which indicates that β-catenin regulation was dependent on TiO2NPs-induced autophagy. The inhibition of β-catenin resulted in dysregulation of cyclin D1 protein expression level. In conclusion, following exposure to TiO2NPs, MSCs undergo autophagy, which induces cell proliferation among the cell population by upregulation of cyclin D1 through the Wnt/GSK3β/β-catenin pathway.
Collapse
Affiliation(s)
- Shunbang Yu
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Australia
| | - Feng Wang
- Department of Clinical Laboratory, Baoan Maternal and Child Health Hospital, Jinan University, Shenzhen, PRC, China
| | - Yujie Bi
- Department of Neurosurgery, The First Affiliated Hospital of Baotou Medical College, Baotou Medical College, Inner Mongolia Autonomous Region, China
| | - Pu Wang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Australia
| | - Rui Zhang
- Xinjiang Key Laboratory of Minority Speech and Language Information Processing, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumchi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Joanna Bohatko-Naismith
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Australia
| | - Xudong Zhang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Australia
| | - He Wang
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Australia
| |
Collapse
|
10
|
Ma WX, Li CY, Tao R, Wang XP, Yan LJ. Reductive Stress-Induced Mitochondrial Dysfunction and Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5136957. [PMID: 32566086 PMCID: PMC7277050 DOI: 10.1155/2020/5136957] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023]
Abstract
The goal of this review was to summarize reported studies focusing on cellular reductive stress-induced mitochondrial dysfunction, cardiomyopathy, dithiothreitol- (DTT-) induced reductive stress, and reductive stress-related free radical reactions published in the past five years. Reductive stress is considered to be a double-edged sword in terms of antioxidation and disease induction. As many underlying mechanisms are still unclear, further investigations are obviously warranted. Nonetheless, reductive stress is thought to be caused by elevated levels of cellular reducing power such as NADH, glutathione, and NADPH; and this area of research has attracted increasing attention lately. Albeit, we think there is a need to conduct further studies in identifying more indicators of the risk assessment and prevention of developing heart damage as well as exploring more targets for cardiomyopathy treatment. Hence, it is expected that further investigation of underlying mechanisms of reductive stress-induced mitochondrial dysfunction will provide novel insights into therapeutic approaches for ameliorating reductive stress-induced cardiomyopathy.
Collapse
Affiliation(s)
- Wei-Xing Ma
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Chun-Yan Li
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
- Shantou University Medical College, 515041 Shantou, Guangdong, China
| | - Ran Tao
- Qingdao Municipal Center for Disease Control & Prevention, 266034 Qingdao, Shandong, China
| | - Xin-Ping Wang
- Qingdao University of Science and Technology, 266042 Qingdao, Shandong, China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center (UNTHSC), Fort Worth, Texas 76107, USA
| |
Collapse
|
11
|
Oliveira LV, Silva GR, Souza GL, Magalhães TEA, Barbosa GLR, Turrioni AP, Moura CCG. A laboratory evaluation of cell viability, radiopacity and tooth discoloration induced by regenerative endodontic materials. Int Endod J 2020; 53:1140-1152. [DOI: 10.1111/iej.13308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- L. V. Oliveira
- Department of EndodonticsFederal University of Uberlândia Uberlândia Brazil
| | - G. R. Silva
- Department of Operative Dentistry and Dental MaterialsFederal University of Uberlândia Uberlândia Brazil
| | - G. L. Souza
- Department of EndodonticsFederal University of Uberlândia Uberlândia Brazil
| | | | - G. L. R. Barbosa
- Department of Stomatological Diagnosis School of DentistryFederal University of UberlândiaUberlândiaBrazil
| | - A. P. Turrioni
- Department of Pediatric School of Dentistry Federal University of Uberlândia Uberlândia Brazil
| | - C. C. G. Moura
- Department of EndodonticsFederal University of Uberlândia Uberlândia Brazil
| |
Collapse
|
12
|
Chen RJ, Chen YY, Liao MY, Lee YH, Chen ZY, Yan SJ, Yeh YL, Yang LX, Lee YL, Wu YH, Wang YJ. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies. Int J Mol Sci 2020; 21:E2387. [PMID: 32235610 PMCID: PMC7177614 DOI: 10.3390/ijms21072387] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/16/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Nanotechnology has rapidly promoted the development of a new generation of industrial and commercial products; however, it has also raised some concerns about human health and safety. To evaluate the toxicity of the great diversity of nanomaterials (NMs) in the traditional manner, a tremendous number of safety assessments and a very large number of animals would be required. For this reason, it is necessary to consider the use of alternative testing strategies or methods that reduce, refine, or replace (3Rs) the use of animals for assessing the toxicity of NMs. Autophagy is considered an early indicator of NM interactions with cells and has been recently recognized as an important form of cell death in nanoparticle-induced toxicity. Impairment of autophagy is related to the accelerated pathogenesis of diseases. By using mechanism-based high-throughput screening in vitro, we can predict the NMs that may lead to the generation of disease outcomes in vivo. Thus, a tiered testing strategy is suggested that includes a set of standardized assays in relevant human cell lines followed by critical validation studies carried out in animals or whole organism models such as C. elegans (Caenorhabditis elegans), zebrafish (Danio rerio), and Drosophila (Drosophila melanogaster)for improved screening of NM safety. A thorough understanding of the mechanisms by which NMs perturb biological systems, including autophagy induction, is critical for a more comprehensive elucidation of nanotoxicity. A more profound understanding of toxicity mechanisms will also facilitate the development of prevention and intervention policies against adverse outcomes induced by NMs. The development of a tiered testing strategy for NM hazard assessment not only promotes a more widespread adoption of non-rodent or 3R principles but also makes nanotoxicology testing more ethical, relevant, and cost- and time-efficient.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yu-Ying Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 900, Taiwan;
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung 651, Taiwan;
| | - Zi-Yu Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
| | - Li-Xing Yang
- Institute of Oral Medicine and Department of Stomatology, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yen-Ling Lee
- Department of Hematology/Oncology, Tainan Hospital of Health and Welfare, Tainan 700, Taiwan;
| | - Yuan-Hua Wu
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-Y.C.); (Z.-Y.C.); (Y.-L.Y.)
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|