1
|
Abstract
Wildfire smoke (WFS) is a mixture of respirable particulate matter, environmental gases, and other hazardous pollutants that originate from the unplanned burning of arid vegetation during wildfires. The increasing size and frequency of recent wildfires has escalated public and occupational health concerns regarding WFS inhalation, by either individuals living nearby and downstream an active fire or wildland firefighters and other workers that face unavoidable exposure because of their profession. In this review, we first synthesize current evidence from environmental, controlled, and interventional human exposure studies, to highlight positive associations between WFS inhalation and cardiovascular morbidity and mortality. Motivated by these findings, we discuss preventative measures and suggest interventions to mitigate the cardiovascular impact of wildfires. We then review animal and cell exposure studies to call attention on the pathophysiological processes that support the deterioration of cardiovascular tissues and organs in response to WFS inhalation. Acknowledging the challenges of integrating evidence across independent sources, we contextualize laboratory-scale exposure approaches according to the biological processes that they model and offer suggestions for ensuring relevance to the human condition. Noting that wildfires are significant contributors to ambient air pollution, we compare the biological responses triggered by WFS to those of other harmful pollutants. We also review evidence for how WFS inhalation may trigger mechanisms that have been proposed as mediators of adverse cardiovascular effects upon exposure to air pollution. We finally conclude by highlighting research areas that demand further consideration. Overall, we aspire for this work to serve as a catalyst for regulatory initiatives to mitigate the adverse cardiovascular effects of WFS inhalation in the community and alleviate the occupational risk in wildland firefighters.
Collapse
Affiliation(s)
| | | | | | | | - Jessica M. Oakes
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
2
|
Eden MJ, Matz J, Garg P, Gonzalez MP, McElderry K, Wang S, Gollner MJ, Oakes JM, Bellini C. Prolonged smoldering Douglas fir smoke inhalation augments respiratory resistances, stiffens the aorta, and curbs ejection fraction in hypercholesterolemic mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160609. [PMID: 36470384 PMCID: PMC10699119 DOI: 10.1016/j.scitotenv.2022.160609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
While mounting evidence suggests that wildland fire smoke (WFS) inhalation may increase the burden of cardiopulmonary disease, the occupational risk of repeated exposure during wildland firefighting remains unknown. To address this concern, we evaluated the cardiopulmonary function in mice following a cumulative exposure to lab-scale WFS equivalent to a mid-length wildland firefighter (WLFF) career. Dosimetry analysis indicated that 80 exposure hours at a particulate concentration of 22 mg/m3 yield in mice the same cumulative deposited mass per unit of lung surface area as 3600 h of wildland firefighting. To satisfy this condition, male Apoe-/- mice were whole-body exposed to either air or smoldering Douglas fir smoke (DFS) for 2 h/day, 5 days/week, over 8 consecutive weeks. Particulate size in DFS fell within the respirable range for both mice and humans, with a count median diameter of 110 ± 20 nm. Expiratory breath hold in mice exposed to DFS significantly reduced their minute volume (DFS: 27 ± 4; Air: 122 ± 8 mL/min). By the end of the exposure time frame, mice in the DFS group exhibited a thicker (DFS: 109 ± 3; Air: 98 ± 3 μm) and less distensible (DFS: 23 ± 1; Air: 28 ± 1 MPa-1) aorta with reduced diastolic blood augmentation capacity (DFS: 53 ± 2; Air: 63 ± 2 kPa). Cardiac magnetic resonance imaging further revealed larger end-systolic volume (DFS: 14.6 ± 1.1; Air: 9.9 ± 0.9 μL) and reduced ejection-fraction (DFS: 64.7 ± 1.0; Air: 75.3 ± 0.9 %) in mice exposed to DFS. Consistent with increased airway epithelium thickness (DFS: 10.4 ± 0.8; Air: 7.6 ± 0.3 μm), airway Newtonian resistance was larger following DFS exposure (DFS: 0.23 ± 0.03; Air: 0.20 ± 0.03 cmH2O-s/mL). Furthermore, parenchyma mean linear intercept (DFS: 36.3 ± 0.8; Air: 33.3 ± 0.8 μm) and tissue thickness (DFS: 10.1 ± 0.5; Air: 7.4 ± 0.7 μm) were larger in DFS mice. Collectively, mice exposed to DFS manifested early signs of cardiopulmonary dysfunction aligned with self-reported events in mid-career WLFFs.
Collapse
Affiliation(s)
- Matthew J Eden
- Department of Bioengineering, Northeastern University, MA, USA
| | - Jacqueline Matz
- Department of Bioengineering, Northeastern University, MA, USA
| | - Priya Garg
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | | | | | - Siyan Wang
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Michael J Gollner
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, MA, USA
| | - Chiara Bellini
- Department of Bioengineering, Northeastern University, MA, USA.
| |
Collapse
|
3
|
Vokina VA, Sosedova LM, Novikov MA, Titov EA, Andreeva ES, Rukavishnikov VS. Effects of Daily Peat Smoke Exposure on Present and Next Generations. TOXICS 2022; 10:750. [PMID: 36548583 PMCID: PMC9786320 DOI: 10.3390/toxics10120750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to follow the neurotoxic effect of peat smoke on adult outbred rats and its influence on central nervous system (CNS) parameters in first-generation offspring. Under experimental conditions, exposure to peat smoke was carried out on adult male Wistar rats for 24 h. After the end of the exposure, an open field test (OFT), electroencephalography (EEG), and histological analysis of the testes and brains of smoke-exposed males were performed, after which they were mated with intact females to obtain F1 offspring. Stillbirth, neonatal mortality, and body weight at 4, 7, 14, and 21 postnatal days, as well as behavior in the OFT and EEG parameters during puberty (3 months), were assessed. The results of the examination of F0 males showed a significant increase in motor activity and anxiety in the open field test and a violation of EEG parameters. Histopathologically, peat smoke caused a sharp increase in shadow cells (homogeneous cells with pale-stained cytoplasm, in which the cell and nuclear membranes are not visualized) and degeneratively altered neurons in the brain; we found no changes in the testicles. Peat smoke exposure during preconception did not affect neonatal mortality and weight gain in F1 offspring. Adult females born to peat-smoke-exposed males showed an increase in locomotor activity, and the behavior of adult F1 males did not differ from the control. In F1 males, a statistically significant increase in slow-wave activity indices in the delta band was observed.
Collapse
|
4
|
Positive Effect of Air Purifier Intervention on Baroreflex Sensitivity and Biomarkers of Oxidative Stress in Patients with Coronary Artery Disease: A Randomized Crossover Intervention Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127078. [PMID: 35742327 PMCID: PMC9223013 DOI: 10.3390/ijerph19127078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Exposure to fine particulate matter increases the risk of cardiovascular morbidity and mortality. Few studies have tested the beneficial effect of indoor air filtration intervention in patients with cardiovascular disease. The aim of this study is to investigate the effect of air filtration on mitigating cardiovascular health in patients with coronary artery disease. This randomized, double-blind, crossover study is conducted with 38 coronary artery disease patients. The intervention consists of the following three periods: two-week active and sham air filtration interventions, with a two-week washout period. The indoor PM2.5 concentration is continuously monitored during the entire study period. We measure the blood pressure, heart rate variability, baroreflex sensitivity, autonomic function test results, and endothelial function. The two-week active air filtration intervention for two weeks reduces the average indoor concentration of PM2.5 by 33.9%. The indoor PM2.5 concentration is significantly correlated to cross-correlation baroreflex sensitivity. Active air filtration is significantly associated with a decrease in the indicator of oxidative stress represented as 8-hydroxy-2′-deoxyguanosine. This study shows that a short-term air filtration intervention improved baroreflex sensitivity and might reduce oxidative stress in coronary artery disease patients. These findings suggest that the use of an air purifier could mitigate the recurrence of cardiovascular disease events in patients with coronary artery disease.
Collapse
|
5
|
Jin SW, Im JS, Park JH, Kim HG, Lee GH, Kim SJ, Kwack SJ, Kim KB, Chung KH, Lee BM, Kacew S, Jeong HG, Kim HS. Effects of tobacco compound 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) on the expression of epigenetically regulated genes in lung carcinogenesis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:1004-1019. [PMID: 34459362 DOI: 10.1080/15287394.2021.1965059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cigarette smoking is a major cause of lung cancer. Although tobacco smoking-induced genotoxicity has been well established, there is apparent lack of abundance functional epigenetic effects reported On cigarette smoke-induced lung carcinogenesis. The aim of this study was to determine effects of intratracheal administration of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) utilizing target gene expression DNA methylation patterns in lung tissues of mice following twice weekly for 8 weeks treatment. An unbiased approach where genomic regions was undertaken to assess early methylation changes within mouse pulmonary tissues. A methylated-CpG island recovery assay (MIRA) was performed to map the DNA methylome in lung tissues, with the position of methylated DNA determined using a Genome Analyzer (MIRA-SEQ). Alterations in epigenetic-regulated target genes were confirmed with quantitative reverse transcription-PCR, which revealed 35 differentially hypermethylated genes including Cdkn1C, Hsf4, Hnf1a, Cdx1, and Hoxa5 and 30 differentially hypomethylated genes including Ddx4, Piwi1, Mdm2, and Pce1 in NNK-exposed lung tissue compared with controls. The main pathway of these genes for mediating biological information was analyzed using the Kyoto Encyclopedia of Genes and Genomes database. Among them, Rssf1 and Mdm2 were closely associated with NNK-induced lung carcinogenesis. Taken together, our data provide valuable resources for detecting cigarette smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Sun Woo Jin
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jong Seung Im
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hyeon Park
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyung Gyun Kim
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Se Jong Kim
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Jun Kwack
- Department Of Biochemistry And Health Science, Changwon National University, Gyeongnam Republic of Korea
| | - Kyu-Bong Kim
- College Of Pharmacy, Dankook University, Chungnam, Republic of Korea
| | - Kyu Hyuck Chung
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byung Mu Lee
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sam Kacew
- McLaughlin Centre for Population Health Risk Assessment, University Of Ottawa, Ottawa, ON, Canada
| | - Hye Gwang Jeong
- College Of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Sik Kim
- School Of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Martin WK, Padilla S, Kim YH, Hunter DL, Hays MD, DeMarini DM, Hazari MS, Gilmour MI, Farraj AK. Zebrafish irritant responses to wildland fire-related biomass smoke are influenced by fuel type, combustion phase, and byproduct chemistry. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:674-688. [PMID: 34006202 PMCID: PMC8237130 DOI: 10.1080/15287394.2021.1925608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Human exposure to wildfire-derived particulate matter (PM) is linked to adverse health outcomes; however, little is known regarding the influence of biomass fuel type and burn conditions on toxicity. The aim of this study was to assess the irritant potential of extractable organic material (EOM) of biomass smoke condensates from five fuels (eucalyptus, pine, pine needle, peat, or red oak), representing various fire-prone regions of the USA, burned at two temperatures each [flaming (approximately 640°C) or (smoldering approximately 500°C)] using a locomotor assay in zebrafish (Danio rerio) larvae. It was postulated that locomotor responses, as measures of irritant effects, might be dependent upon fuel type and burn conditions and that these differences relate to combustion byproduct chemistry. To test this, locomotor activity was tracked for 60 min in 6-day-old zebrafish larvae (25-32/group) immediately after exposure to 0.4% dimethyl sulfoxide (DMSO) vehicle or EOM from the biomass smoke condensates (0.3-30 µg EOM/ml; half-log intervals). All EOM samples produced concentration-dependent irritant responses. Linear regression analysis to derive rank-order potency indicated that on a µg PM basis, flaming pine and eucalyptus were the most irritating. In contrast, on an emission-factor basis, which normalizes responses to the amount of PM produced/kg of fuel burned, smoldering smoke condensates induced greater irritant responses (>100-fold) than flaming smoke condensates, with smoldering pine being the most potent. Importantly, irritant responses significantly correlated with polycyclic aromatic hydrocarbon (PAH) content, but not with organic carbon or methoxyphenols. Data indicate that fuel type and burn condition influence the quantity and chemical composition of PM as well as toxicity.
Collapse
Affiliation(s)
- W Kyle Martin
- Curriculum in Toxicology and Environmental Medicine, UNC-Chapel Hill, USA
| | - S Padilla
- Biomolecular and Computational Toxicology Division, Us Epa, Rtp, NC, US
| | - Y H Kim
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC, US
| | - D L Hunter
- Biomolecular and Computational Toxicology Division, Us Epa, Rtp, NC, US
| | - M D Hays
- Air Methods & Characterization Division, Us Epa, Rtp, NC, US
| | - D M DeMarini
- Biomolecular and Computational Toxicology Division, Us Epa, Rtp, NC, US
| | - M S Hazari
- Public Health and Integrated Toxicology Division, Us Epa, Rtp, NC, US
| | - M I Gilmour
- Public Health and Integrated Toxicology Division, Us Epa, Rtp, NC, US
| | - A K Farraj
- Public Health and Integrated Toxicology Division, Us Epa, Rtp, NC, US
| |
Collapse
|
7
|
Zhou YM, An SJ, Tang EJ, Xu C, Cao Y, Liu XL, Yao CY, Xiao H, Zhang Q, Liu F, Li YF, Ji AL, Cai TJ. Association between short-term ambient air pollution exposure and depression outpatient visits in cold seasons: a time-series analysis in northwestern China. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:389-398. [PMID: 33622183 DOI: 10.1080/15287394.2021.1880507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Depression is known to be one of the most common mental disorders raising global concerns. However, evidence regarding the association between short-term air pollution exposure and risk of development of depression is limited. The aim of this was to assess the relationship between short-term ambient air pollution exposure and depression in outpatient visits in Xi'an, a northwestern Chinese metropolis. Data for air pollutants including particulate matter (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) levels from October 1, 2010 to December 31, 2013 and number of daily depression outpatient visits (92,387 in total) were collected. A time-series quasi-Poisson regression model was adopted to determine the association between short-term air pollutant concentrations and frequency of outpatient visits for depression with different lag models. Consequently, 10 μg/m3 increase of SO2 and NO2 levels corresponded to significant elevation in number of outpatient-visits for depression on concurrent days (lag 0), and this relationship appeared stronger in cool seasons (October to March). However, the association of PM10 was only significant in males aged 30-50 at lag 0. Evidence indicated that short-term exposure to ambient air pollutants especially in cool seasons might be associated with increased risk of outpatient visits for depression.
Collapse
Affiliation(s)
- Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shu-Jie An
- Medical Department, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - En-Jie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, China
| | - Yi Cao
- Department of Health Economics Management, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qian Zhang
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Feng Liu
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ai-Ling Ji
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tong-Jian Cai
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|