1
|
Zhang T, Yang S, Li R, Dong R, Zou H. Dried blood spots-based metabolomic analysis in preterm infants with necrotizing enterocolitis. J Matern Fetal Neonatal Med 2024; 37:2416610. [PMID: 39428341 DOI: 10.1080/14767058.2024.2416610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Necrotizing enterocolitis (NEC) is the leading cause of death among premature infants, and there is a lack of specific early diagnostic markers. Blood sampling is expected to better reflect pathophysiological and metabolic changes in systematic illness, but there is a risk of iatrogenic anemia, especially in premature infants. Dried blood spots technique seems to have important advantages compared to whole blood sampling as it requires only 12-15 μL as sample volume. This study aimed to investigate the special metabolomics of preterm neonates at high risk of NEC using dried blood spots. METHODS Cases and controls were strictly matched 1:1. Dried blood spots (n = 32, 16 cases-16 controls) from newborn screening were subjected to LC-MS/MS. Metabolomic data were analyzed by orthogonal partial least squares-discriminant analysis (OPLS-DA) and univariate/multivariate statistical analysis. RESULTS Compared to the control group, the NEC group had a significant reduction in seven amino acids (glycine, alanine, threonine, proline, ornithine, lysine, and asparagine). CONCLUSIONS The metabolic profile of neonates with NEC differs significantly from that of controls, making possible their separation with the use of targeted (LC-MS/MS) dried blood spots-based metabolomic analysis. Seven specific markers were identified for early detection and intervention.
Collapse
Affiliation(s)
- Tiantian Zhang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Shimin Yang
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Ruotong Li
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Ruiqian Dong
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| | - Hui Zou
- Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan City, China
| |
Collapse
|
2
|
Kim HY, Lee JD, Kim H, Kim Y, Park JJ, Oh SB, Goo H, Cho KJ, Kim KB. Mass spectrometry (MS)-based metabolomics of plasma and urine in dry eye disease (DED)-induced rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-14. [PMID: 39185961 DOI: 10.1080/15287394.2024.2393770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Dry eye disease (DED) is an ophthalmic disease associated with poor quality and quantity of tears, and the number of patients is steadily increasing. The aim of this study was to determine plasma and urine metabolites obtained from DED scopolamine animal model where dry eye conditions (DRY) are induced. It was also of interest to examine whether DED (scopolamine) rat model was exacerbated by treatment with benzalkonium chloride (BAC). Subsequently, plasma and urine metabolites were analyzed using liquid chromatography (LC) and gas chromatography (GC)-mass spectrometry (MS), respectively. Data demonstrated that DED indicators such as tear volume, tear breakup time (TBUT), and corneal damage in the DED groups (DRY and BAC group) differed from those of control (CON). Similar results were noted in inflammatory factors such as interleukin (IL-1β), IL-6, and tumor necrosis factor (TNF)-α. In the partial least squares-discriminant analysis (PLS-DA) score plots, the three groups were distinctly separated from each other. In addition, the related metabolites were also associated with these distinct separations as evidenced by 9 and 14 in plasma and urine, respectively. Almost all of the selected metabolites were decreased in the DRY group compared to CON, and the BAC group was lower than the DRY. In plasma and urine, lysophosphatidylcholine/lysophosphatidylethanolamine, organic acids, amino acids, and sugars varied between three groups, and these metabolites were related to inflammation and oxidative stress. Data suggest that treatment with scopolamine with/without BAC-induced DED and affected the level of systemic metabolites involved in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - HongYoon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - YuJin Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jin Ju Park
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Soo Bean Oh
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hyeyoon Goo
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyong Jin Cho
- Department of Ophthalmology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam, Republic of Korea
| |
Collapse
|
3
|
Metabolomics in Corneal Diseases: A Narrative Review from Clinical Aspects. Metabolites 2023; 13:metabo13030380. [PMID: 36984820 PMCID: PMC10055016 DOI: 10.3390/metabo13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Corneal pathologies may have subtle manifestations in the initial stages, delaying diagnosis and timely treatment. This can lead to irreversible visual loss. Metabolomics is a rapidly developing field that allows the study of metabolites in a system, providing a complementary tool in the early diagnosis and management of corneal diseases. Early identification of biomarkers is key to prevent disease progression. The advancement of nuclear magnetic resonance and mass spectrometry allows the identification of new biomarkers in the analysis of tear, cornea, and aqueous humor. Novel perspectives on disease mechanisms are identified, which provide vital information for potential targeted therapies in the future. Current treatments are analyzed at a molecular level to offer further information regarding their efficacy. In this article, we provide a comprehensive review of the metabolomic studies undertaken in the cornea and various pathologies such as dry eye disease, Sjogren’s syndrome, keratoconus, post-refractive surgery, contact lens wearers, and diabetic corneas. Lastly, we discuss the exciting future that metabolomics plays in cornea research.
Collapse
|
4
|
Kim HY, Lee JD, Lee YH, Seo SW, Lee HS, Kim S, Kim KB. Urinary Metabolomics in Young Soccer Players after Winter Training Season. Metabolites 2022; 12:metabo12121283. [PMID: 36557321 PMCID: PMC9784126 DOI: 10.3390/metabo12121283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
During the off-season, soccer players in Korea attend the winter training season (WTS) to build running stamina for the next season. For young soccer players, proper recovery time is needed to prevent injury or muscle damage. In this study, urinary metabolites in young players after 1, 5, and 10 days of the WTS were analyzed using nuclear magnetic resonance spectroscopy (NMR) combined with multivariate analysis to suggest appropriate recovery times for improving their soccer skills. After NMR analysis of the urine samples obtained from young players, 79 metabolites were identified, and each group (1, 5, or 10 days after WTS) was separated from the before the WTS group in the target profiling analysis using partial least squares-discriminant analysis (PLS-DA). Of these, 15 metabolites, including 1-methylnicotinamide, 3-indoxylsulfate, galactarate, glutamate, glycerol, histamine, methylmalonate, maltose, N-phenylacetylglycine, trimethylamine, urea, 2-hydroxybutyrate, adenine, alanine, and lactate, were significantly different than those from before the WTS and were mainly involved in the urea, purine nucleotide, and glucose-alanine cycles. In this study, most selected metabolites increased 1 day after the WTS and then returned to normal levels. However, 4 metabolites, adenine, 2-hydroxybutyrate, alanine, and lactate, increased during the 5 days of recovery time following the WTS. Based on excess ammonia, adenine, and lactate levels in the urine, at least 5 days of recovery time can be considered appropriate.
Collapse
Affiliation(s)
- Hyang-Yeon Kim
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Jung-Dae Lee
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Yun-Hwan Lee
- Department of Exercise and Medical Science, Graduate School, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Sang-Won Seo
- Department of Sports Science, Gwangju University, Gwangju 61743, Republic of Korea
| | - Ho-Seong Lee
- Department of Exercise and Medical Science, Graduate School, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Correspondence: (H.-S.L.); (K.-B.K.)
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan Daehak-ro 63 beon-gil 2, Busan 46241, Republic of Korea
| | - Kyu-Bong Kim
- Center for Human Risk Assessment, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
- Correspondence: (H.-S.L.); (K.-B.K.)
| |
Collapse
|
5
|
Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022; 8:gels8120816. [PMID: 36547340 PMCID: PMC9778550 DOI: 10.3390/gels8120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye disease (DED) is the most common clinical ocular surface disease. Given its multifactorial etiology, no consensus has been reached on the diagnosis criteria for dry eye disease. Topical drug administration remains the mainstay of treatment but is limited to the rapid clearance from the eye surface. To address these problems, hydrogel-based materials were designed to detect biomarkers or act as drug delivery systems by taking advantage of their good biocompatibility, excellent physical and mechanical properties, and long-term implant stability. Biosensors prepared using biocompatible hydrogels can be sensitive in diagnosing DED, and the designed hydrogels can also improve the drug bioavailability and retention time for more effective and long-term treatment. This review summarizes recent advances in the use of hydrogels for diagnosing and treating dry eye, aiming to provide a novel reference for the eventual clinical translation of hydrogels in the context of dry eye disease.
Collapse
|
6
|
Lindgren ES, Cil O, Verkman AS, Pasricha ND. Ocular Surface Ion Transport and Dry Eye Disease. CURRENT OPHTHALMOLOGY REPORTS 2022; 10:188-197. [PMID: 38213468 PMCID: PMC10783585 DOI: 10.1007/s40135-022-00295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 10/24/2022]
Abstract
Purpose of Review To review the role of ocular surface epithelial (corneal and conjunctival) ion transporters in the pathogenesis and treatment of dry eye disease (DED). Recent Findings Currently, anti-inflammatory agents are the mainstay of DED treatment, though there are several agents in development that target ion transport proteins on the ocular surface, acting by pro-secretory or anti-absorptive mechanisms to increase the tear fluid Film volume. Activation or inhibition of selected ion transporters can alter tear fluid osmolality, driving water transport onto the ocular surface via osmosis. Several ion transporters have been proposed as potential therapeutic targets for DED, including the cystic fibrosis transmembrane conductance regulator (CFTR), calcium-activated chloride channels (CaCCs), and the epithelial sodium channel (ENaC). Summary Ocular surface epithelial cell ion transporters are promising targets for pro-secretory and anti-absorptive therapies of DED.
Collapse
Affiliation(s)
- Ethan S. Lindgren
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Onur Cil
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Neel D. Pasricha
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
A Metabolomics Approach to Sulforaphane Efficacy in Secondhand Smoking-Induced Pulmonary Damage in Mice. Metabolites 2022; 12:metabo12060518. [PMID: 35736451 PMCID: PMC9227370 DOI: 10.3390/metabo12060518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Sulforaphane is an isocyanate abundantly present in cruciferous vegetables. In the present study, we aimed to investigate the effects of sulforaphane on secondhand smoking (SHS)-induced pulmonary damage in mice. Additionally, a metabolomic study was performed to identify biomarkers associated with pulmonary disease using proton nuclear magnetic resonance (1H-NMR) analysis. Male C57BL6J mice were divided into a control group, an SHS exposure group (positive control group, PC), and a sulforaphane treatment group exposed to secondhand smoke (SS) (n = 5 per group). The PC and SS groups were exposed to secondhand smoke in a chamber twice daily for four weeks. Mice in the SS group were orally administered sulforaphane (50 mg/kg) for four weeks during secondhand smoke exposure. Histopathological examination of the lungs revealed pulmonary damage in PC mice, including loss of bronchial epithelial cells, bronchial wall thickening, and infiltration of macrophages. In contrast, mice in the SS group showed little or no epithelial thickening, thereby exhibiting reduced lung damage. Mouse serum and lung tissues were collected and analyzed to determine changes in endogenous metabolites using 1H-NMR. After target profiling, we identified metabolites showing the same tendency in the serum and lung as biomarkers for SHS-induced pulmonary damage, including taurine, glycerol, creatine, arginine, and leucine. As a result of histopathological examination, sulforaphane might inhibit SHS-induced lung damage, and metabolite analysis results suggest potential biomarkers for SHS-induced pulmonary damage in mice.
Collapse
|
8
|
Zong Y, Cheng C, Li K, Xue R, Chen Z, Liu X, Wu K. Metabolomic Alterations in the Tear Fluids of Patients With Superior Limbic Keratoconjunctivitis. Front Med (Lausanne) 2022; 8:797630. [PMID: 35118093 PMCID: PMC8804220 DOI: 10.3389/fmed.2021.797630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
PurposeSuperior limbic keratoconjunctivitis (SLK) is a bilateral, chronic inflammatory disease that recurs for up to several years; however, the fundamental processes involved in its pathogenic mechanisms remain unknown. We aimed to investigate the metabolomic alterations in the tear fluids of patients with superior limbic keratoconjunctivitis (SLK) compared with those of healthy volunteers (Ctrl group).MethodsWe performed a cross-sectional study involving 42 subjects. Tear fluid was taken from one eye of 24 SLK patients (40.13 ± 14.55 years, 83.33% female) and 18 healthy volunteers (Ctrl, 39.89 ± 9.2 years, 72.22% female) using Schirmer strips. After the liquid extraction of tear metabolites, samples were infused into the QE HFX Orbitrap mass spectrometer in both positive and negative ion mode. Metabolites were quantitatively analyzed and matched with entries in the HMDB database. Metabolic differences between the SLK group and the control group were identified based on multivariate statistical analysis. Open database sources, including SMPDB and MetaboAnalyst, were used to identify metabolic pathways.ResultsAmong 179 metabolites retained for annotation, 133 metabolites were finally identified, among which 50 were found to be significantly changed in SLK patients. Of these 50 metabolites, 31 metabolites significantly increased and 19 metabolites decreased in SLK patients. The altered metabolites are mainly involved in α linolenic acid and linoleic acid metabolism, ketone body metabolism, butyrate metabolism, mitochondrial electron transport chain, carnitine synthesis, and so on. The most significantly changed pathway was linoleic acid metabolism. To explore the utility of tear biomarkers, a model combining 9 metabolites (phenol, ethyl glucuronide, eicosapentaenoic acid, 12-keto-leukotriene B4, linoleic acid, hypoxanthine, triethanolamine, 1-nitrohexane, and terephthalic acid) was selected as a candidate biomarker.ConclusionThe results reveal that SLK has a specific metabolomic profile, of which some key elements can serve as potential biomarkers of SLK for diagnostic and prognostic purposes. The findings of this study are novel and provide a basis for further investigations of the mechanism of SLK.
Collapse
|
9
|
Kim HR, Park JH, Lee SH, Kwack SJ, Lee J, Kim S, Yoon S, Kim KB, Lee BM, Kacew S, Kim HS. Using intracellular metabolic profiling to identify novel biomarkers of cisplatin-induced acute kidney injury in NRK-52E cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:29-42. [PMID: 34445936 DOI: 10.1080/15287394.2021.1969305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to investigate changes in the intracellular metabolism resulting from cisplatin (CDDP)-induced nephrotoxicity in normal kidney tubular epithelial NRK-52E cells. Cytotoxicity, cell cycle analysis, and apoptotic cell death were all evaluated in NRK-52E cells treated with CDDP. Subsequently, proton nuclear magnetic resonance (1H-NMR) spectroscopy was used to investigate cellular metabolic profiles. CDDP-induced nephrotoxicity was determined in vivo model. Cytotoxicity in the NRK-52E cells significantly rose following treatment with CDDP and these increases were found to be concentration-dependent. Both p53 and Bax protein expression was increased in CDDP-treated NRK-52E cells, correlating with enhanced cellular apoptosis. In addition, a number of metabolites were altered in both media and cell lysates in these cells. In cell lysates, citrate, creatinine, and acetate levels were dramatically reduced following treatment with 20 µM CDDP concentrations, while glutamate level was elevated. Lactate and acetate levels were significantly increased in culture media but citrate concentrations were reduced following high 20 µM CDDP concentrations incubation. In addition, excretion of clusterin, calbindin, neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), selenium binding protein 1 (SBP1), and pyruvate kinase M2 (PKM2) into the culture media was significantly increased in CDDP-treated cells while expression of acetyl CoA synthetase 1 (AceCS1) was markedly reduced in these cells. These findings suggest that acetate-dependent metabolic pathway may be a reliable and useful biomarker for detecting CDDP-induced nephrotoxicity. Taken together, data demonstrate that the discovery of novel biomarkers by metabolite profiling in target cells may contribute to the detection of nephrotoxicity and new drug development.
Collapse
Affiliation(s)
- Hae Ri Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hyeon Park
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Song Hee Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Jun Kwack
- Department of Biochemistry and Health Science, Changwon National University, Gyeongnam, Republic of Korea
| | - Jaewon Lee
- Department of Neuroscience, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Sungpil Yoon
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyu-Bong Kim
- Department of Toxicology, College of Pharmacy, Dankook University, Chungnam, Republic of Korea
| | - Byung Mu Lee
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sam Kacew
- Department of Cellular and Molecular Medicine, McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Canada
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Kim HY, Lee YJ, Kim SJ, Lee JD, Kim S, Ko MJ, Kim JW, Shin CY, Kim KB. Metabolomics profiling of valproic acid-induced symptoms resembling autism spectrum disorders using 1H NMR spectral analysis in rat model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:1-13. [PMID: 34445937 DOI: 10.1080/15287394.2021.1967821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prenatal exposure to valproic acid (VPA) has been implicated in the manifestation of autism spectrum disorder (ASD)-like behavioral and functional changes both in human and rodents including mice and rats. The objective of this study was to determine metabolomics profiling and biomarkers related to VPA-induced symptoms resembling ASD using proton nuclear magnetic resonance (1H-NMR) spectral data. VPA was administered to pregnant rats at gestation day 12.5 and effects measured subsequently in male 4-week-old offspring pups. The sociability of VPA-treated animals was significantly diminished and exhibited ASD-like behavior as evidenced by reduction of social adaptation disorder and lack of social interactions. To find biomarkers related to ASD, the following were collected prefrontal brain cortices, urine bladder and blood samples directly from heart puncture. In all samples, principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) displayed significant clustering pattern differences between control and treated groups. Valine, taurine, myo-inositol, 3-hydroxybutyrate and 1,3-dihydroxyacetone were significantly decreased in brain cortices in treated rats. Serum metabolites of glucose, creatine phosphate, lactate, glutamine and threonine were significantly increased in VPA-administered animals. Urinary metabolites of pimelate, 3-hydroxyisovalerate and valerate were significantly reduced in VPA-treated rat, whereas galactose and galactonate levels were elevated. Various metabolites were associated with mitochondrial dysfunction metabolism and central nervous system disorders. Data demonstrated that VPA-induced alterations in endogenous metabolites of serum, urine, and brain cortex which might prove useful as biomarkers for symptoms resembling ASD as a model of this disorder.
Collapse
Affiliation(s)
- Hyang Yeon Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Yong-Jae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Sun Jae Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan Republic of Korea
| | - Mee Jung Ko
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Ji-Woon Kim
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chan Young Shin
- Department Of Neuroscience, School Of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
- Center for Human Risk Assessment, Dankook University, Cheonan, Chungnam Republic of Korea
| |
Collapse
|
11
|
Na J, Zhang J, Choe YL, Lim CS, Park YH. An in vitro study on the differentiated metabolic mechanism of chloroquine-resistant Plasmodium falciparum using high-resolution metabolomics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:859-874. [PMID: 34338159 DOI: 10.1080/15287394.2021.1944945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chloroquine (CQ) is an important drug used therapeutically for treatment of malaria. However, due to limited number of studies on metabolic targets of chloroquine (CQ), it is difficult to attribute mechanisms underlying resistance associated with usage of this drug. The present study aimed to investigate the metabolic signatures of CQ-resistant Plasmodium falciparum (PfDd2) compared to CQ-sensitive Plasmodium falciparum (Pf3D7). Both Pf3D7 and PfDd2 were treated with CQ at 200 nM for 48 hr; thereafter, the harvested red blood cells (RBCs) and media were subjected to microscopy and high-resolution metabolomics (HRM). Glutathione, γ-L-glutamyl-L-cysteine, spermidine, inosine monophosphate, alanine, and fructose-1,6-bisphosphate were markedly altered in PfDd2 of RBC. In the media, cysteine, cysteic acid, spermidine, phenylacetaldehyde, and phenylacetic acid were significantly altered in PfDd2. These differential metabolic signatures related signaling pathways of PfDd2, such as oxidative stress pathway and glycolysis may provide evidence for understanding the resistance mechanism and pathogenesis of the CQ-resistant parasite.
Collapse
Affiliation(s)
- Jinhyuk Na
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jian Zhang
- Omics Research Center, Sejong, Republic of Korea
| | - Young Lan Choe
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Chae Seung Lim
- Department of Laboratory Medicine, Korea University, Seoul, Republic of Korea
| | - Youngja Hwang Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
- Omics Research Center, Sejong, Republic of Korea
| |
Collapse
|
12
|
Park R, Choi WG, Lee MS, Cho YY, Lee JY, Kang HC, Sohn CH, Song IS, Lee HS. Pharmacokinetics of α-amanitin in mice using liquid chromatography-high resolution mass spectrometry and in vitro drug-drug interaction potentials. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:821-835. [PMID: 34187333 DOI: 10.1080/15287394.2021.1944942] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was to determine pharmacokinetics of α-amanitin, a toxic bicyclic octapeptide isolated from the poisonous mushrooms, following intravenous (iv) or oral (po) administration in mice using a newly developed and validated liquid chromatography-high resolution mass spectrometry. The iv injected α-amanitin disappeared rapidly from the plasma with high a clearance rate (26.9-30.4 ml/min/kg) at 0.1, 0.2, or 0.4 mg/kg doses, which was consistent with a rapid and a major excretion of α-amanitin via the renal route (32.6%). After the po administration of α-amanitin at doses of 2, 5, or 10 mg/kg to mice, the absolute bioavailability of α-amanitin was 3.5-4.8%. Due to this low bioavailability, 72.5% of the po administered α-amanitin was recovered from the feces. When α-amanitin is administered po, the tissue to plasma area under the curve ratio was higher in stomach > large intestine > small intestine > lung ~ kidneys > liver but not detected in brain, heart, and spleen. The high distribution of α-amanitin to intestine, kidneys, and liver is in agreement with the previously reported major intoxicated organs following acute α-amanitin exposure. In addition, α-amanitin weakly or negligibly inhibited cytochrome P450 and 5'-diphospho-glucuronosyltransferase enzymes activity in human liver microsomes as well as major drug transport functions in mammalian cells overexpressing transporters. Data suggested remote drug interaction potential may be associated with α-amanitin exposure.
Collapse
Affiliation(s)
- Ria Park
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Won-Gu Choi
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Min Seo Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Han Chang Kang
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Chang Hwan Sohn
- Department of Emergency Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea
| | - Im-Sook Song
- Kyungpook National University, Daegu, Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy and BK21 Four-sponsored Advanced Program for SmartPharma Leaders, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|