1
|
Romeiro Dos Santos I, Machado da Silva IN, Camilo-Cotrim CF, Madureira de Almeida L, Luiz Borges L, Cardoso Bailão EFL. Spring water quality monitoring using multiple bioindicators from multiple collection sites. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:707-719. [PMID: 37598363 DOI: 10.1080/15287394.2023.2246507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The aim of this study was to examine the water quality of the Extrema River spring in a Brazilian Cerrado area. Three collection sites (P1 - P3) were sampled in the dry and rainy seasons, which are close to industries from different sectors. In the physicochemical analysis, a decrease in dissolved oxygen levels (<5 mg/L) and pH (< 6) at P3 was detected. An increase in heterotrophic bacteria count was recorded at all sites (> 500 colonies/ml). In ecotoxicological analyses, P2 and P3 exhibited toxicity using Vibrio fischeri (> 20%). In evaluating toxicity, the reduction in seed germination was significant utilizing Lactuca sativa at all locations and with Allium cepa only at P2; rootlet length was decreased at P3 on L. sativa and at all sites with A. cepa. In contrast, loss of membrane integrity and mitochondrial function of meristems was adversely affected at all locations using both L. sativa and A. cepa assays. Principal components analysis (PCA) approach indicated that seasonality apparently did not markedly interfere with the obtained data, but it is important to include more collection locations to be evaluated with multiple bioindicators in the spring region. Our data indicate the urgent need for more rigorous programs to monitor the discharge of effluents into water springs.
Collapse
Affiliation(s)
- Igor Romeiro Dos Santos
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Goiás, Brazil
| | | | | | | | - Leonardo Luiz Borges
- Laboratório de Biotecnologia, Câmpus Central, Universidade Estadual de Goiás, Anápolis, Goiás, Brazil
- Escola de Ciências Médicas e da Vida, Pontíficia Universidade Católica de Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
2
|
Viana TS, Campos D, Bartilotti M, Leite FG, Zanoni MVB, Dorta DJ, Oliveira DP, Pestana JLT. Magnetized vermiculite as a tool for the treatment of produced water generated by oil companies: Effects on aquatic organisms before and after treatment. J Appl Toxicol 2023; 43:1393-1405. [PMID: 37055923 DOI: 10.1002/jat.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/15/2023]
Abstract
Produced water (PW) generated by oil companies is a highly impacting waste that contains chemicals such as metals and organic and inorganic compounds. Given its polluting potential, PW requires effective treatment before being discharged into the environment. Conventional treatments have limited efficiency in removing PW toxicity, so alternative approaches must be developed and standardized. In this context, treatment with adsorbent materials like magnetized vermiculite (VMT-mag) is highlighted. This work aimed to evaluate the efficiency of treatment with VMT-mag in reducing PW toxicity to aquatic biota. For this purpose, three aquatic species (the midge Chironomus riparius, the planarian Girardia tigrina, and the crustacean Daphnia magna) were exposed to untreated PW and to PW treated with VMT-mag at laboratory conditions. The assessed endpoints included mortality, growth, emergence, and developmental time of C. riparius; mortality, locomotion, feeding, and head regeneration of G. tigrina; and intrinsic population growth rate (r) and reproductive output of D. magna. The results showed that all the species exposed to raw PW were impaired: C. riparius had delayed development, G. tigrina had reduced locomotor activity and delayed head regeneration, and D. magna had reduced reproduction and delayed intrinsic population growth rate (r). Most of the analyzed parameters showed that treatment with VMT-mag diminished PW toxicity. Therefore, using VMT-mag to treat PW may be the key to reducing the PW effects on aquatic organisms.
Collapse
Affiliation(s)
- Tais S Viana
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Diana Campos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Mariana Bartilotti
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
| | - Fernanda G Leite
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Valnice Boldrin Zanoni
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - Daniel J Dorta
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Química, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danielle P Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- National Institute of Science and Technology for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Substances (INCT-DATREM), Araraquara, São Paulo, Brazil
| | - João L T Pestana
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Silva MLND, Nogueira DJ, Vicentini DS, Puerari RC, Alves PRL, Fuzinatto CF, Matias WG. Rapid Communication: oxidative stress induced by mixed exposure to glyphosate and silver nanoparticles. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:586-590. [PMID: 35317707 DOI: 10.1080/15287394.2022.2054888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aim of this study was to examine oxidative stress induced by the binary mixture of silver nanoparticles (AgNP) and glyphosate (Gly) in Daphnia magna by measurement of reactive oxygen species (ROS) production, glutathione (GSH) levels, enzyme activities of catalase (CAT) and superoxide dismutase (SOD) as well as malondialdehyde (MDA) content. Acute exposure of Daphnia magna to binary mixture of AgNP and Gly resulted in significant biochemical responses indicative of oxidative damage. This response seemed to be related to imbalance in enzymatic/non-enzymatic antioxidant enzymes associated with intracellular overproduction of ROS and significant increase in MDA levels, indicating that the integrity and function of the cell membrane was damaged. These changes adversely affected the fitness and survival of Daphnia magna and negatively influenced offspring growth and reproduction.
Collapse
Affiliation(s)
- Marlon Luiz Neves da Silva
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
- Federal University of Fronteira Sul, Chapecó, Brazil
| | - Diego José Nogueira
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Denice Schulz Vicentini
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Rodrigo Costa Puerari
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - William Gerson Matias
- Laboratory of Environmental Toxicology, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|