1
|
Siwak M, Piotrzkowska D, Skrzypek M, Majsterek I. Effects of PEMF and LIPUS Therapy on the Expression of Genes Related to Peripheral Nerve Regeneration in Schwann Cells. Int J Mol Sci 2024; 25:12791. [PMID: 39684499 DOI: 10.3390/ijms252312791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Peripheral nerve regeneration remains a major challenge in neuroscience, despite advancements in understanding its mechanisms. Current treatments, including nerve transplantation and drug therapies, face limitations such as invasiveness and incomplete recovery of nerve function. Physical therapies, like pulsed electromagnetic fields (PEMF) and low-intensity ultrasound (LIPUS), are gaining attention for their potential to enhance regeneration. This study analyzes the effects of PEMF and LIPUS on gene expression in human primary Schwann cells, which are crucial for nerve myelination and repair. Key genes involved in neurotrophin signaling (NGF, BDNF), inflammation (IL-1β, IL-6, IL-10, TNF-α, TGF-β), and regeneration (CRYAB, CSPG, Ki67) were assessed. The results of this study reveal that combined PEMF and LIPUS therapies promote Schwann cell proliferation, reduce inflammation, and improve the regenerative environment, offering potential for optimizing these therapies for clinical use in regenerative medicine.
Collapse
Affiliation(s)
- Mateusz Siwak
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Danuta Piotrzkowska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Maciej Skrzypek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
2
|
Zhang T, Zhao Z, Wang T. Pulsed electromagnetic fields as a promising therapy for glucocorticoid-induced osteoporosis. Front Bioeng Biotechnol 2023; 11:1103515. [PMID: 36937753 PMCID: PMC10020513 DOI: 10.3389/fbioe.2023.1103515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is considered the third type of osteoporosis and is accompanied by high morbidity and mortality. Long-term usage of glucocorticoids (GCs) causes worsened bone quality and low bone mass via their effects on bone cells. Currently, there are various clinical pharmacological treatments to regulate bone mass and skeletal health. Pulsed electromagnetic fields (PEMFs) are applied to treat patients suffering from delayed fracture healing and non-unions. PEMFs may be considered a potential and side-effect-free therapy for GIOP. PEMFs inhibit osteoclastogenesis, stimulate osteoblastogenesis, and affect the activity of bone marrow mesenchymal stem cells (BMSCs), osteocytes and blood vessels, ultimately leading to the retention of bone mass and strength. However, the underlying signaling pathways via which PEMFs influence GIOP remain unclear. This review attempts to summarize the underlying cellular mechanisms of GIOP. Furthermore, recent advances showing that PEMFs affect bone cells are discussed. Finally, we discuss the possibility of using PEMFs as therapy for GIOP.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiantian Wang,
| |
Collapse
|
3
|
Gerdesmeyer L, Zielhardt P, Klüter T, Gollwitzer H, Gerdesmeyer L, Hausdorf J, Ringeisen M, Knobloch K, Saxena A, Krath A. Stimulation of human bone marrow mesenchymal stem cells by electromagnetic transduction therapy - EMTT. Electromagn Biol Med 2022; 41:304-314. [DOI: 10.1080/15368378.2022.2079672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ludger Gerdesmeyer
- Department of Sports Medicine, Palo Alto Medical Center, Palo Alto, USA
- Department of Orthopedic and Traumatology, Technical University Munich, Munich Germany
- Städtisches Krankenhaus Kiel, Kiel
| | - Paula Zielhardt
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Kiel, Germany
| | - Tim Klüter
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Kiel, Germany
| | - Hans Gollwitzer
- Department of Orthopedic and Traumatology, Technical University Munich, Munich Germany
| | - Lennart Gerdesmeyer
- Department of Orthopedic and Traumatology, Technical University Munich, Munich Germany
| | - Joerg Hausdorf
- Orthopedic Department, Physical Medicine and Rehabilitation, University Hospital of Munich, Germany
| | - Martin Ringeisen
- Department of Orthopedic Surgery and Traumatology, Orthopaedic Medical Center Dr. Ringeisen, Augsburg, Germany
| | - Karsten Knobloch
- Orthopedic Department, SportPraxis Prof. Dr. med. Karsten Knobloch, Hannover
| | - Amol Saxena
- Department of Sports Medicine, Palo Alto Medical Center, Palo Alto, USA
| | - André Krath
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Kiel, Germany
| |
Collapse
|
4
|
Electrical Stimulation and Cellular Behaviors in Electric Field in Biomedical Research. MATERIALS 2021; 15:ma15010165. [PMID: 35009311 PMCID: PMC8746014 DOI: 10.3390/ma15010165] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
Research on the cellular response to electrical stimulation (ES) and its mechanisms focusing on potential clinic applications has been quietly intensified recently. However, the unconventional nature of this methodology has fertilized a great variety of techniques that make the interpretation and comparison of experimental outcomes complicated. This work reviews more than a hundred publications identified mostly from Medline, categorizes the techniques, and comments on their merits and weaknesses. Electrode-based ES, conductive substrate-mediated ES, and noninvasive stimulation are the three principal categories used in biomedical research and clinic. ES has been found to enhance cell proliferation, growth, migration, and stem cell differentiation, showing an important potential in manipulating cellular activities in both normal and pathological conditions. However, inappropriate parameters or setup can have negative effects. The complexity of the delivered electric signals depends on how they are generated and in what form. It is also difficult to equate one set of parameters with another. Mechanistic studies are rare and badly needed. Even so, ES in combination with advanced materials and nanotechnology is developing a strong footing in biomedical research and regenerative medicine.
Collapse
|
5
|
Pinton G, Ferraro A, Balma M, Moro L. Specific low-frequency electromagnetic fields induce expression of active KDM6B associated with functional changes in U937 cells. Electromagn Biol Med 2020; 39:139-153. [PMID: 32151171 DOI: 10.1080/15368378.2020.1737807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, we investigated the effects of specific low-frequency electromagnetic field sequences on U937 cells, an in vitro model of human monocyte/macrophage differentiation. U937 cells were exposed to electromagnetic stimulation by means of the SynthéXer system using two similar sequences, XR-BC31 and XR-BC31/F. Each sequence was a time series of 29 wave segments, equal to a total duration of 77 min. Here, we report that exposure (4 d, once a day) of U937 cells to the XR-BC31 setting, but not to the XR-BC31/F, resulted in increased expression of the histone demethylase KDM6B along with a global reduction in histone H3 lysine 27 tri-methylation (H3K27me3). Furthermore, exposure to the XR-BC31 sequence induced differentiation of U937 cells towards a macrophage-like phenotype displaying a KDM6B dependent increase in expression and secretion of the anti-inflammatory interleukins (ILs), IL-10 and IL-4. Importantly, all the observed changes were highly dependent on the nature of the sequence. Our results open a new way of interpretation for the effects of low-frequency electromagnetic fields observed in vivo. Indeed, it is conceivable that a specific low-frequency electromagnetic fields treatment may cause the reprogramming of H3K27me3 and cell differentiation.
Collapse
Affiliation(s)
- Giulia Pinton
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Angelo Ferraro
- School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece
| | | | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
6
|
Suryani L, Too JH, Hassanbhai AM, Wen F, Lin DJ, Yu N, Teoh SH. Effects of Electromagnetic Field on Proliferation, Differentiation, and Mineralization of MC3T3 Cells. Tissue Eng Part C Methods 2020; 25:114-125. [PMID: 30661463 DOI: 10.1089/ten.tec.2018.0364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IMPACT STATEMENT We present the study about how the parameters of pulsed electromagnetic field (PEMF) stimulus affected calvarial osteoblast precursor cell in terms of growth, viability, and differentiation. This research provides insight and foundation to clinical application of noninvasive therapy using PEMF to improve bone regeneration.
Collapse
Affiliation(s)
- Luvita Suryani
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore
| | - Jian Hui Too
- 3 National Dental Centre Singapore, Singapore, Singapore
| | - Ammar Mansoor Hassanbhai
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore
| | - Feng Wen
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore
| | - Daryl Jimian Lin
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Na Yu
- 3 National Dental Centre Singapore, Singapore, Singapore.,4 Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Swee-Hin Teoh
- 1 School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,2 Centre for Developmental Biology, Tissue Engineering, Regenerative Medicine and Innovation, Singapore, Singapore.,5 Lee Kong Chian School of Medicine Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Wang T, Yang L, Jiang J, Liu Y, Fan Z, Zhong C, He C. Pulsed electromagnetic fields: promising treatment for osteoporosis. Osteoporos Int 2019; 30:267-276. [PMID: 30603841 DOI: 10.1007/s00198-018-04822-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
Osteoporosis (OP) is considered to be a well-defined disease which results in high morbidity and mortality. In patients diagnosed with OP, low bone mass and fragile bone strength have been demonstrated to significantly increase risk of fragility fractures. To date, various anabolic and antiresorptive therapies have been applied to maintain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs) are employed to treat patients suffering from delayed fracture healing and nonunions. Although PEMFs stimulate osteoblastogenesis, suppress osteoclastogenesis, and influence the activity of bone marrow mesenchymal stem cells (BMSCs) and osteocytes, ultimately leading to retention of bone mass and strength. However, whether PEMFs could be taken into clinical use to treat OP is still unknown. Furthermore, the deeper signaling pathways underlying the way in which PEMFs influence OP remain unclear.
Collapse
Affiliation(s)
- T Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - L Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - J Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Y Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Z Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C Zhong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
8
|
Ferroni L, Gardin C, Dolkart O, Salai M, Barak S, Piattelli A, Amir-Barak H, Zavan B. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: an in-vitro study. Sci Rep 2018; 8:5108. [PMID: 29572540 PMCID: PMC5865106 DOI: 10.1038/s41598-018-23499-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/14/2018] [Indexed: 12/31/2022] Open
Abstract
Pulsed electromagnetic fields (PEMFs) have been considered a potential treatment modality for fracture healing, however, the mechanism of their action remains unclear. Mammalian target of rapamycin (mTOR) signaling may affect osteoblast proliferation and differentiation. This study aimed to assess the osteogenic differentiation of mesenchymal stem cells (MSCs) under PEMF stimulation and the potential involvement of mTOR signaling pathway in this process. PEMFs were generated by a novel miniaturized electromagnetic device. Potential changes in the expression of mTOR pathway components, including receptors, ligands and nuclear target genes, and their correlation with osteogenic markers and transcription factors were analyzed. Involvement of the mTOR pathway in osteogenesis was also studied in the presence of proinflammatory mediators. PEMF exposure increased cell proliferation and adhesion and the osteogenic commitment of MSCs even in inflammatory conditions. Osteogenic-related genes were over-expressed following PEMF treatment. Our results confirm that PEMFs contribute to activation of the mTOR pathway via upregulation of the proteins AKT, MAPP kinase, and RRAGA, suggesting that activation of the mTOR pathway is required for PEMF-stimulated osteogenic differentiation. Our findings provide insights into how PEMFs influence osteogenic differentiation in normal and inflammatory environments.
Collapse
Affiliation(s)
- Letizia Ferroni
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35100, Padova, Italy
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35100, Padova, Italy
| | - Oleg Dolkart
- Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel.
| | - Moshe Salai
- Division of Orthopaedic Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | | | - Adriano Piattelli
- Department of Medical, Oral, and Biotechnological Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Hadar Amir-Barak
- Department of Internal Medicine E, Tel Aviv Sourasky Medical Center, Tel Aviv University Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padova, Via G. Colombo 3, 35100, Padova, Italy
| |
Collapse
|
9
|
Tong J, Sun L, Zhu B, Fan Y, Ma X, Yu L, Zhang J. Pulsed electromagnetic fields promote the proliferation and differentiation of osteoblasts by reinforcing intracellular calcium transients. Bioelectromagnetics 2017; 38:541-549. [DOI: 10.1002/bem.22076] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 07/22/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Lijun Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Bin Zhu
- Xi Jing University; Xi'an China
| | - Yun Fan
- Xi Jing University; Xi'an China
| | - Xingfeng Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Liyin Yu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an China
| |
Collapse
|
10
|
Zhu S, He H, Zhang C, Wang H, Gao C, Yu X, He C. Effects of pulsed electromagnetic fields on postmenopausal osteoporosis. Bioelectromagnetics 2017; 38:406-424. [PMID: 28665487 DOI: 10.1002/bem.22065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 06/05/2017] [Indexed: 02/05/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is considered to be a well-defined subject that has caused high morbidity and mortality. In elderly women diagnosed with PMOP, low bone mass and fragile bone strength have been proven to significantly increase risk of fragility fractures. Currently, various anabolic and anti-resorptive therapies have been employed in an attempt to retain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs), first applied in treating patients with delayed fracture healing and nonunions, may turn out to be another potential and effective therapy for PMOP. PEMFs can enhance osteoblastogenesis and inhibit osteoclastogenesis, thus contributing to an increase in bone mass and strength. However, accurate mechanisms of the positive effects of PEMFs on PMOP remain to be further elucidated. This review attempts to summarize recent advances of PEMFs in treating PMOP based on clinical trials, and animal and cellular studies. Possible mechanisms are also introduced, and the future possibility of application of PEMFs on PMOP are further explored and discussed. Bioelectromagnetics. 38:406-424, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Siyi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Hongchen He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chi Zhang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Haiming Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengfei Gao
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
11
|
Krath A, Klüter T, Stukenberg M, Zielhardt P, Gollwitzer H, Harrasser N, Hausdorf J, Ringeisen M, Gerdesmeyer L. Electromagnetic transduction therapy in non-specific low back pain: A prospective randomised controlled trial. J Orthop 2017; 14:410-415. [PMID: 28736490 DOI: 10.1016/j.jor.2017.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/22/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES A prospective randomised controlled trial to investigate the efficacy of electromagnetic transduction therapy (EMTT) for treatment of patients with non-specific low back pain. DESIGN Two groups with non-specific low back pain were either treated with conventional therapy alone over 6 weeks or in combination with 8 sessions of EMTT. RESULTS In both intervention groups the low back pain related pain and the degree of disability decreased significantly at follow-up visits. Combination of EMTT and conventional therapy proved significant superior to conventional therapy alone. CONCLUSION EMTT is a promising treatment in patients with non-specific low back pain.
Collapse
Affiliation(s)
- André Krath
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Campus Kiel, Germany
| | - Tim Klüter
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Campus Kiel, Germany
| | - Martin Stukenberg
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Campus Kiel, Germany
| | - Paula Zielhardt
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Campus Kiel, Germany
| | - Hans Gollwitzer
- Department of Orthopedic and Traumatology, Technical University Munich, Klinikum Rechts der Isar, Germany
| | - Norbert Harrasser
- Department of Orthopedic and Traumatology, Technical University Munich, Klinikum Rechts der Isar, Germany
| | - Jörg Hausdorf
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Germany
| | - Martin Ringeisen
- Orthopaedic Medical Center Dr. Ringeisen, Konrad-Adenauer-Allee 33, 86150 Augsburg, Germany
| | - Ludger Gerdesmeyer
- Department of Orthopaedic Surgery and Traumatology, University Schleswig Holstein, Campus Kiel, Germany.,Department of Orthopedic and Traumatology, Technical University Munich, Klinikum Rechts der Isar, Germany
| |
Collapse
|
12
|
Viganò M, Sansone V, d'Agostino MC, Romeo P, Perucca Orfei C, de Girolamo L. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J Orthop Surg Res 2016; 11:163. [PMID: 27986082 PMCID: PMC5162101 DOI: 10.1186/s13018-016-0496-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Musculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly effective in treating bone, cartilage, and tendon disorders or joint degeneration. As a consequence, the development of novel biological therapies that can treat more effectively these conditions should be the highest priority in regenerative medicine. Mesenchymal stem cells (MSCs) represent one of the most promising tools in musculoskeletal tissue regenerative medicine, thanks to their proliferation and differentiation potential and their immunomodulatory and trophic ability. Indeed, MSC-based approaches have been proposed for the treatment of almost all orthopedic conditions, starting from different cell sources, alone or in combination with scaffolds and growth factors, and in one-step or two-step procedures. While all these approaches would require cell harvesting and transplantation, the possibility to stimulate the endogenous MSCs to enhance their tissue homeostasis activity represents a less-invasive and cost-effective therapeutic strategy. Nowadays, the role of tissue-specific resident stem cells as possible therapeutic target in degenerative pathologies is underinvestigated. Biophysical stimulations, and in particular extracorporeal shock waves treatment and pulsed electromagnetic fields, are able to induce proliferation and support differentiation of MSCs from different origins and affect their paracrine production of growth factors and cytokines. SHORT CONCLUSIONS The present review reports the attempts to exploit the resident stem cell potential in musculoskeletal pathologies, highlighting the role of MSCs as therapeutic target of currently applied biophysical treatments.
Collapse
Affiliation(s)
- Marco Viganò
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Valerio Sansone
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.,Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | | | - Pietro Romeo
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy
| | - Carlotta Perucca Orfei
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.,Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Laura de Girolamo
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| |
Collapse
|
13
|
Bell IR, Schwartz GE. Enhancement of adaptive biological effects by nanotechnology preparation methods in homeopathic medicines. HOMEOPATHY 2015; 104:123-38. [DOI: 10.1016/j.homp.2014.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
|
14
|
Muehsam D, Ventura C. Life rhythm as a symphony of oscillatory patterns: electromagnetic energy and sound vibration modulates gene expression for biological signaling and healing. Glob Adv Health Med 2014; 3:40-55. [PMID: 24808981 PMCID: PMC4010966 DOI: 10.7453/gahmj.2014.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- David Muehsam
- Visual Institute of Developmental Sciences, Bologna, Italy (Dr Muehsam)
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems, Visual Institute of Developmental Sciences, Bologna; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna (Dr Ventura), Italy
| |
Collapse
|
15
|
Liu HF, Yang L, He HC, Zhou J, Liu Y, Wang CY, Wu YC, He CQ. Pulsed electromagnetic fields on postmenopausal osteoporosis in southwest China: A randomized, active-controlled clinical trial. Bioelectromagnetics 2013; 34:323-32. [DOI: 10.1002/bem.21770] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/17/2012] [Indexed: 11/11/2022]
|
16
|
Low Frequency Pulsed Electromagnetic Field Affects Proliferation, Tissue-Specific Gene Expression, and Cytokines Release of Human Tendon Cells. Cell Biochem Biophys 2013; 66:697-708. [DOI: 10.1007/s12013-013-9514-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Luo F, Hou T, Zhang Z, Xie Z, Wu X, Xu J. Effects of pulsed electromagnetic field frequencies on the osteogenic differentiation of human mesenchymal stem cells. Orthopedics 2012; 35:e526-31. [PMID: 22495854 DOI: 10.3928/01477447-20120327-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to evaluate the effect of different frequencies of pulsed electromagnetic fields on the osteogenic differentiation of human mesenchymal stem cells. Third-generation human mesenchymal stem cells were irradiated with different frequencies of pulsed electromagnetic fields, including 5, 25, 50, 75, 100, and 150 Hz, with a field intensity of 1.1 mT, for 30 minutes per day for 21 days. Changes in human mesenchymal stem cell morphology were observed using phase contrast microscopy. Alkaline phosphatase activity and osteocalcin expression were also determined to evaluate human mesenchymal stem cell osteogenic differentiation.Different effects were observed on human mesenchymal stem cell osteoblast induction following exposure to different pulsed electromagnetic field frequencies. Levels of human mesenchymal stem cell differentiation increased when the pulsed electromagnetic field frequency was increased from 5 hz to 50 hz, but the effect was weaker when the pulsed electromagnetic field frequency was increased from 50 Hz to 150 hz. The most significant effect on human mesenchymal stem cell differentiation was observed at of 50 hz.The results of the current study show that pulsed electromagnetic field frequency is an important factor with regard to the induction of human mesenchymal stem cell differentiation. Furthermore, a pulsed electromagnetic field frequency of 50 Hz was the most effective at inducing human mesenchymal stem cell osteoblast differentiation in vitro.
Collapse
Affiliation(s)
- Fei Luo
- Department of Orthopaedics, South-West Hospital, The Third Military University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Qin QH. A theoretical study of bone remodelling under PEMF at cellular level. Comput Methods Biomech Biomed Engin 2011; 15:885-97. [PMID: 21604221 DOI: 10.1080/10255842.2011.565752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pulsed electromagnetic field (PEMF) devices have been used clinically to slow down osteoporosis and accelerate the healing of bone fractures for many years. However, the underlying mechanism by which bone remodelling under PEMF is regulated remains poorly understood. In this paper, a mathematical model of bone cell population of bone remodelling under PEMF at cellular level is developed to address this issue for the first time. On the basis of this model and control theory, parametric study of control mechanisms is carried out and a number of possible control mechanisms are identified. These findings will help further the understanding of bone remodelling under PEMF and advance therapies and pharmacological developments in clinical trials.
Collapse
Affiliation(s)
- Yanan Wang
- Research School of Engineering, Australian National University, Canberra, ACT, 0200, Australia
| | | |
Collapse
|
19
|
Saino E, Fassina L, Van Vlierberghe S, Avanzini M, Dubruel P, Magenes G, Visai L, Benazzo F. Effects of Electromagnetic Stimulation on Osteogenic Differentiation of Human Mesenchymal Stromal Cells Seeded onto Gelatin Cryogel. Int J Immunopathol Pharmacol 2011; 24:1-6. [DOI: 10.1177/03946320110241s201] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone tissue engineering typically uses biomaterial scaffolds, osteoblasts or cells that can become osteoblasts, and biophysical stimulations to promote cell attachment and differentiation. In this study, we investigated the effects of an electromagnetic wave on mesenchymal stromal cells isolated from the bone marrow and seeded upon gelatin cryogel disks. In comparison with control conditions without electromagnetic stimulus, the electromagnetic treatment (magnetic field, 2 mT; frequency, 75 Hz) increased the cell proliferation and differentiation and enhanced the biomaterial surface coating with bone extracellular matrix proteins. Using this tissue-engineering approach, the gelatin biomaterial, coated with differentiated cells and their extracellular matrix proteins, may be used in clinical applications as an implant for bone defect repair.
Collapse
Affiliation(s)
- E. Saino
- Dipartimento di Biochimica - Sez. Medicina e Farmacia, University of Pavia, Pavia, Italy
- Center for Tissue Engineering (C.I.T.), University of Pavia, Pavia, Italy
| | - L. Fassina
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
- Center for Tissue Engineering (C.I.T.), University of Pavia, Pavia, Italy
| | | | - M.A. Avanzini
- Oncoematologia Pediatrica, IRCCS San Matteo, University of Pavia, Pavia, Italy
| | - P. Dubruel
- Biomaterials Research Group, University of Ghent, Ghent, Belgium
| | - G. Magenes
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
- Center for Tissue Engineering (C.I.T.), University of Pavia, Pavia, Italy
| | - L. Visai
- Dipartimento di Biochimica - Sez. Medicina e Farmacia, University of Pavia, Pavia, Italy
- IRCCS Fondazione Salvatore Maugeri, Pavia, Italy
- International Centre for Studies and Research in Biomedicine (I.C.B.), Luxembourg
- Center for Tissue Engineering (C.I.T.), University of Pavia, Pavia, Italy
| | - F. Benazzo
- Dipartimento SMEC - Sez. Ortopedia e Traumatologia, IRCCS San Matteo, University of Pavia, Pavia, Italy
- Center for Tissue Engineering (C.I.T.), University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Chalidis B, Sachinis N, Assiotis A, Maccauro G. Stimulation of bone formation and fracture healing with pulsed electromagnetic fields: biologic responses and clinical implications. Int J Immunopathol Pharmacol 2011; 24:17-20. [PMID: 21669132 DOI: 10.1177/03946320110241s204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pulsed electromagnetic fields (PEMF) have been used for several years to supplement bone healing. However, the mode of action of this non-invasive method is still debated and quantification of its effect on fracture healing is widely varied. At cellular and molecular level, PEMF has been advocated to promote the synthesis of extracellular matrix proteins and exert a direct effect on the production of proteins that regulate gene transcription. Electromagnetic fields may also affect several membrane receptors and stimulate osteoblasts to secrete several growth factors such as bone morphogenic proteins 2 and 4 and TGF-beta. They could also accelerate intramedullary angiogenesis and improve the load to failure and stiffness of the bone. Although healing rates have been reported in up to 87 % of delayed unions and non-unions, the efficacy of the method is significantly varied while patient or fracture related variables could not be clearly associated with a successful outcome.
Collapse
Affiliation(s)
- B Chalidis
- Interbalkan Medical Center, Orthopaedic Department, Thessaloniki, Greece
| | | | | | | |
Collapse
|
21
|
Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H. EMF acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Bioelectromagnetics 2010; 31:277-85. [PMID: 20041434 DOI: 10.1002/bem.20560] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of electromagnetic fields (EMFs) to treat nonunion fractures developed from observations in the mid-1900s. Whether EMF directly regulates the bone marrow mesenchymal stem cells (MSCs), differentiating into osteoblasts or adipocytes, remains unknown. In the present study, we investigated the roles of sinusoidal EMF of 15 Hz, 1 mT in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that EMF promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. EMF increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast-specific mRNA expression of RUNX2, ALP, BMP2, DLX5, and BSP. In contrast, EMF decreased adipogenesis and inhibited adipocyte-specific mRNA expression of adipsin, AP-2, and PPARgamma2, and also inhibited protein expression of PPARgamma2. These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is influenced by EMF.
Collapse
Affiliation(s)
- Yong Yang
- Department of Orthopedics, Tongji Hospital, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
22
|
Gómez-Ochoa I, Gómez-Ochoa P, Gómez-Casal F, Cativiela E, Larrad-Mur L. Pulsed electromagnetic fields decrease proinflammatory cytokine secretion (IL-1β and TNF-α) on human fibroblast-like cell culture. Rheumatol Int 2010; 31:1283-9. [PMID: 20372910 DOI: 10.1007/s00296-010-1488-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 03/27/2010] [Indexed: 11/30/2022]
Abstract
The clinical use of pulsed electromagnetic fields (PEMF) in osteoarticular pathology is widely extended, although the mechanisms involved are unknown. The aim of this study was to evaluate the action of a new protocol of treatment with PEMF on liquid medium cultures of fibroblast-like cells derivates of mononuclear peripheral blood cells. Fibroblast-like cells growth was obtained in liquid medium culture from mononuclear cells (MNC) of human peripheral blood. The PEMF irradiation protocol included an intensity of 2.25 mT, a frequency of 50 Hz and an application time of 15 min on days 7, 8 and 9 of cell culture. Immunophenotype was performed with specific heterologous monoclonal antibodies for each cell receptor (Vimentin, Cytokeratin, CD34, CD41, CD61 and CD68). The cytokines' production was determined in the supernatant of the culture medium by means of the Luminex technology. The immunophenotype did not show any statistical difference on comparing treated against non-treated cell cultures on any of the days. In the treatment cell population, the proinflammatory cytokines, IL-1β and TNF-α showed a significant decrease on days 14 and 21 of the culture, whilst IL-10 increased significantly on day 21. It is concluded that PEMF irradiation does not alter the cell immunophenotype of the fibroblast-like cell population, but does provoke a decrease in the production of inflammatory-type cytokines (IL-1β, TNF-α) and an increase in cytokines of lymphocytic origin (IL-10). These facts coincide with the chronology of the clinical effect undergone by patients with osteoarticular pathology after PEMF irradiation.
Collapse
Affiliation(s)
- Ignacio Gómez-Ochoa
- Department of Physical Medicine and Rehabilitation, Reina Sofía Hospital, C/Carretera Tarazona, KM 3, CP 31500, Tudela, Spain.
| | | | | | | | | |
Collapse
|
23
|
Manjhi J, Mathur R, Behari J. Effect of low level capacitive-coupled pulsed electric field stimulation on mineral profile of weight-bearing bones in ovariectomized rats. J Biomed Mater Res B Appl Biomater 2010; 92:189-95. [PMID: 19810112 DOI: 10.1002/jbm.b.31505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mineral content, mineral composition, and crystalline pattern of bone in osteoporosis are different from those of normal individuals. Present management of bone mineral loss is rather unsatisfactory primarily because of socioeconomic factors and untoward effects of the treatment drugs. We report the efficacy of capacitive-coupled pulsed electric field (CCPEF) to prevent bone loss in an ovariectomized rat model of osteoporosis. One month postsurgery either leg was stimulated with CCPEF, whereas the other leg did not receive any stimulation (sham exposed). The treatment was given in 60 sessions each of 2 h/d (5 days a week). The control group of rats was sham operated. At the end of the observation period, femur and tibia bones were removed. Their bone mineral content (BMC), calcium, phosphorus, and carbon contents were analyzed and bone mineral density (BMD) was calculated. The BMC data were supported by X-ray diffraction (XRD) method. In sham-exposed bones, a statistically significant decrease in BMC, BMD, calcium, and phosphorus contents were obtained as compared to the control. Although in CCPEF bones, there was an attenuation of decrement in the noted parameters except phosphorus. XRD pattern supported these observations. The results suggest that chronic, 60 sessions of 2 h/d, 5 d/wk CCPEF (14 MHz with 16 Hz modulation 16 Hz and 10 V peak to peak) is effective in attenuating the ovariectomy-induced bone mineral loss in rats.
Collapse
Affiliation(s)
- Jayanand Manjhi
- All India Institute of Medical Sciences, Department of Physiology, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
24
|
Hu JH, St-Pierre LS, Buckner CA, Lafrenie RM, Persinger MA. Growth of injected melanoma cells is suppressed by whole body exposure to specific spatial-temporal configurations of weak intensity magnetic fields. Int J Radiat Biol 2010; 86:79-88. [DOI: 10.3109/09553000903419932] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Effects of low intensity pulsed ultrasound with and without increased cortical porosity on structural bone allograft incorporation. J Orthop Surg Res 2008; 3:20. [PMID: 18505579 PMCID: PMC2414658 DOI: 10.1186/1749-799x-3-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/27/2008] [Indexed: 12/03/2022] Open
Abstract
Background Though used for over a century, structural bone allografts suffer from a high rate of mechanical failure due to limited graft revitalization even after extended periods in vivo. Novel strategies that aim to improve graft incorporation are lacking but necessary to improve the long-term clinical outcome of patients receiving bone allografts. The current study evaluated the effect of low-intensity pulsed ultrasound (LIPUS), a potent exogenous biophysical stimulus used clinically to accelerate the course of fresh fracture healing, and longitudinal allograft perforations (LAP) as non-invasive therapies to improve revitalization of intercalary allografts in a sheep model. Methods Fifteen skeletally-mature ewes were assigned to five experimental groups based on allograft type and treatment: +CTL, -CTL, LIPUS, LAP, LIPUS+LAP. The +CTL animals (n = 3) received a tibial ostectomy with immediate replacement of the resected autologous graft. The -CTL group (n = 3) received fresh frozen ovine tibial allografts. The +CTL and -CTL groups did not receive LAP or LIPUS treatments. The LIPUS treatment group (n = 3), following grafting with fresh frozen ovine tibial allografts, received ultrasound stimulation for 20 minutes/day, 5 days/week, for the duration of the healing period. The LAP treatment group (n = 3) received fresh frozen ovine allografts with 500 μm longitudinal perforations that extended 10 mm into the graft. The LIPUS+LAP treatment group (n = 3) received both LIPUS and LAP interventions. All animals were humanely euthanized four months following graft transplantation for biomechanical and histological analysis. Results After four months of healing, daily LIPUS stimulation of the host-allograft junctions, alone or in combination with LAP, resulted in 30% increases in reconstruction stiffness, paralleled by significant increases (p < 0.001) in callus maturity and periosteal bridging across the host/allograft interfaces. Longitudinal perforations extending 10 mm into the proximal and distal endplates filled to varying degrees with new appositional bone and significantly accelerated revitalization of the allografts compared to controls. Conclusion The current study has demonstrated in a large animal model the potential of both LIPUS and LAP therapy to improve the degree of allograft incorporation. LAP may provide an option for increasing porosity, and thus potential in vivo osseous apposition and revitalization, without adversely affecting the structural integrity of the graft.
Collapse
|