1
|
Kim H, Lee YJ, Kwon Y, Kim J. Efficient generation of brain organoids using magnetized gold nanoparticles. Sci Rep 2023; 13:21240. [PMID: 38040919 PMCID: PMC10692130 DOI: 10.1038/s41598-023-48655-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/29/2023] [Indexed: 12/03/2023] Open
Abstract
Brain organoids, which are three-dimensional cell culture models, have the ability to mimic certain structural and functional aspects of the human brain. However, creating these organoids can be a complicated and difficult process due to various technological hurdles. This study presents a method for effectively generating cerebral organoids from human induced pluripotent stem cells (hiPSCs) using electromagnetic gold nanoparticles (AuNPs). By exposing mature cerebral organoids to magnetized AuNPs, we were able to cultivate them in less than 3 weeks. The initial differentiation and neural induction of the neurosphere occurred within the first week, followed by maturation, including regional patterning and the formation of complex networks, during the subsequent 2 weeks under the influence of magnetized AuNPs. Furthermore, we observed a significant enhancement in neurogenic maturation in the brain organoids, as evidenced by increased histone acetylation in the presence of electromagnetic AuNPs. Consequently, electromagnetic AuNPs offer a promising in vitro system for efficiently generating more advanced human brain organoids that closely resemble the complexity of the human brain.
Collapse
Affiliation(s)
- Hongwon Kim
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yoo-Jung Lee
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea
| | - Youngeun Kwon
- Laboratory of Protein Engineering, Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Gene Editing, Department of Chemistry, Dongguk University, Pildong-Ro 1-Gil 30, Jung-Gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
2
|
Foletti A, Ledda M, Lolli MG, Grimaldi S, Lisi A. Electromagnetic information transfer through aqueous system. Electromagn Biol Med 2017; 36:289-294. [PMID: 28704129 DOI: 10.1080/15368378.2017.1347882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Several beneficial effects of the electromagnetic information transfer through aqueous system (EMITTAS) procedure have previously been reported in vitro. The clinical potential of this procedure has also started to be evaluated. Information flow in biological systems can be investigated through chemical and molecular approaches or by a biophysical approach focused on endogenous electrodynamic activities. Electromagnetic signals are endogenously generated at different levels of the biological organization and, likely, play an active role in synchronizing internal cell function or local/systemic adaptive response. Consequently, each adaptive response can be described by its specific electromagnetic pattern and, therefore, correlates with a unique and specific electromagnetic signature. A biophysical procedure synchronously integrating the EMITTAS procedure has already been applied for the treatment of articular pain, low-back pain, neck pain and mobility, fluctuating asymmetry, early-stage chronic kidney disease, refractory gynecological infections, minor anxiety and depression disorders. This clinical strategy involves a single treatment, since the EMITTAS procedure allows the patient to continue his/her own personal treatment at home by means of self-administration of the recorded aqueous system. A significant and long-lasting improvement has been reported, showing a potential beneficial use of this biophysical procedure in the management of common illnesses in an efficient, effective and personalized way. Data from recent studies suggest that aqueous systems may play a key role in providing the basis for recording, storing, transferring and retrieving clinically effective quanta of biological information. These features likely enable to trigger local and systemic self-regulation and self-regeneration potential of the organism.
Collapse
Affiliation(s)
- Alberto Foletti
- a Clinical Biophysics International Research Group , Lugano , Switzerland.,b Institute of Translational Pharmacology, National Research Council-C.N.R ., Rome , Italy
| | - Mario Ledda
- b Institute of Translational Pharmacology, National Research Council-C.N.R ., Rome , Italy
| | - Maria Grazia Lolli
- b Institute of Translational Pharmacology, National Research Council-C.N.R ., Rome , Italy
| | - Settimio Grimaldi
- b Institute of Translational Pharmacology, National Research Council-C.N.R ., Rome , Italy
| | - Antonella Lisi
- b Institute of Translational Pharmacology, National Research Council-C.N.R ., Rome , Italy
| |
Collapse
|
3
|
Taheri M, Mortazavi SMJ, Moradi M, Mansouri S, Hatam GR, Nouri F. Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli. Dose Response 2017; 15:1559325816688527. [PMID: 28203122 PMCID: PMC5298474 DOI: 10.1177/1559325816688527] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mobile phones and Wi-Fi radiofrequency radiation are among the main sources of the exposure of the general population to radiofrequency electromagnetic fields (RF-EMF). Previous studies have shown that exposure of microorganisms to RF-EMFs can be associated with a wide spectrum of changes ranged from the modified bacterial growth to the alterations of the pattern of antibiotic resistance. Our laboratory at the nonionizing department of the Ionizing and Non-ionizing Radiation Protection Research Center has performed experiments on the health effects of exposure to animal models and humans to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons, magnetic resonance imaging, and Helmholtz coils. On the other hand, we have previously studied different aspects of the challenging issue of the ionizing or nonionizing radiation-induced alterations in the susceptibility of microorganisms to antibiotics. In this study, we assessed if the exposure to 900 MHz GSM mobile phone radiation and 2.4 GHz radiofrequency radiation emitted from common Wi-Fi routers alters the susceptibility of microorganisms to different antibiotics. The pure cultures of Listeria monocytogenes and Escherichia coli were exposed to RF-EMFs generated either by a GSM 900 MHz mobile phone simulator and a common 2.4 GHz Wi-Fi router. It is also shown that exposure to RF-EMFs within a narrow level of irradiation (an exposure window) makes microorganisms resistant to antibiotics. This adaptive phenomenon and its potential threats to human health should be further investigated in future experiments. Altogether, the findings of this study showed that exposure to Wi-Fi and RF simulator radiation can significantly alter the inhibition zone diameters and growth rate for L monocytogenes and E coli. These findings may have implications for the management of serious infectious diseases.
Collapse
Affiliation(s)
- M Taheri
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Kerman Province, Iran
| | - S M J Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran; Medical Physics and Medical Engineering Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Moradi
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Kerman Province, Iran
| | - S Mansouri
- Department of Microbiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Kerman Province, Iran
| | - G R Hatam
- Basic Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - F Nouri
- Department of Pharmaceutical Biotechnology and Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
4
|
Abstract
Since biophysical treatment has been reported to be effective in the general management of pain, we decided to assess the specific effect and treatment duration of this therapeutic strategy in low back pain. We were interested in verifying the possibility that a single clinical procedure could reduce pain and improve patients' quality of life within a period of three months. An Electromagnetic Information Transfer Through Aqueous System was employed to record endogenous therapeutic signals from each individual using an electromagnetic recording device (Med Select 729). A highly significant reduction in the Roland Morris low back pain and disability questionnaire score was observed after 3 months following a single biophysical intervention (11.83 ± 6 at baseline versus 2.3 ± 3.25 at 3 months, p < 0.0001). This preliminary report provides further evidence of the theoretical implications and clinical applications of Quantum Electro Dynamic concepts in biology and medicine.
Collapse
|
5
|
Foletti A, Ledda M, Grimaldi S, D'Emilia E, Giuliani L, Liboff A, Lisi A. The trail from quantum electro dynamics to informative medicine. Electromagn Biol Med 2015; 34:147-50. [PMID: 26098527 DOI: 10.3109/15368378.2015.1036073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several years ago just before Christmas, in a small meeting room at the Institute of Pharmacology at the University of Rome, we had the opportunity to attend a meeting on "The role of QED in medicine" by Emilio Del Giudice and Giuliano Preparata. Before that meeting, we were more oriented towards a mechanistic view of Biochemistry and Medicine, believing that chemical reactions could only take place when a random collision between molecules with a gain in energy takes place. We envisioned water as just a solvent in which was possible to dissolve a solute. After we listened to Giuliano's and Emilio's speech on the "New physics of water", and on "The possible origin of coherence in cell, tissues and the interaction of very weak and low frequency magnetic fields with the ions, systems of the cell", we realized that living organisms are complex electrochemical systems which evolved in a relatively narrow range of well-defined environmental parameters. Environmental natural electro-magnetic fields are an ubiquitous factor in nature. If nature gave certain organisms the ability to receive information about the environment via invisible electromagnetic signals, then there must also the capability to discriminate between significant and meaningless ones. Bearing in mind that electromagnetic fields can be perceived by living organisms by means a resonance effect, we should not be amazed if they can be able to induce different biological effects. The work that we will present in memory of Emilio is based on the hypotheses that an aqueous system a chemical differentiation agent such as retinoic acid (RA) were electronically captured and transferred to the culture medium of Neuroblastoma Cell Line (LAN-5) and the proliferation rate was assessed to assess cell responses to the electromagnetic information transfer through the aqueous system. Like those enfolded in living organisms could play a synergic role in modulating biological functions, generating dissipative structures under appropriate patterns of electromagnetic signals providing basis for storing and retrieving biological activities. An external electro-magnetic stimulus from a source molecule can be stored, translated, and transferred by the aqueous systems to the biological target, selectively driving their endogenous activity and mimicking the effect of a source molecule.
Collapse
Affiliation(s)
- Alberto Foletti
- Institute of Translational Pharmacology, National Research Council - CNR , Rome , Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
A unifying neuro-fasciagenic model of somatic dysfunction - underlying mechanisms and treatment - Part I. J Bodyw Mov Ther 2015; 19:310-26. [PMID: 25892388 DOI: 10.1016/j.jbmt.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 02/06/2023]
Abstract
This paper offers an extensive review of the main fascia-mediated mechanisms underlying various dysfunctional and pathophysiological processes of clinical relevance for manual therapy. The concept of somatic dysfunction is revisited in light of the diverse fascial influences that may come into play in its genesis and maintenance. A change in perspective is thus proposed: from a nociceptive model that for decades has viewed somatic dysfunction as a neurologically-mediated phenomenon, to a unifying fascial model that integrates neural influences into a multifactorial and multidimensional interpretation of dysfunctional process as being partially, if not entirely, mediated by the fascia.
Collapse
|
7
|
Farhadi A. Non-Chemical Distant Cellular Interactions as a potential confounder of cell biology experiments. Front Physiol 2014; 5:405. [PMID: 25368582 PMCID: PMC4201089 DOI: 10.3389/fphys.2014.00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/30/2014] [Indexed: 11/21/2022] Open
Abstract
Distant cells can communicate with each other through a variety of methods. Two such methods involve electrical and/or chemical mechanisms. Non-chemical, distant cellular interactions may be another method of communication that cells can use to modify the behavior of other cells that are mechanically separated. Moreover, non-chemical, distant cellular interactions may explain some cases of confounding effects in Cell Biology experiments. In this article, we review non-chemical, distant cellular interactions studies to try to shed light on the mechanisms in this highly unconventional field of cell biology. Despite the existence of several theories that try to explain the mechanism of non-chemical, distant cellular interactions, this phenomenon is still speculative. Among candidate mechanisms, electromagnetic waves appear to have the most experimental support. In this brief article, we try to answer a few key questions that may further clarify this mechanism.
Collapse
Affiliation(s)
- Ashkan Farhadi
- Digestive Disease Center, Memorial Care Medical GroupCosta Mesa, CA, USA
| |
Collapse
|
8
|
Corbellini E, Corbellini M, Licciardello O, Marotta F. Modulating biological events by biophysics: an innovative molecular methodology using ion cyclotron resonance--a pilot study. Rejuvenation Res 2014; 17:188-191. [PMID: 24059702 DOI: 10.1089/rej.2013.1499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The QUEC PHISIS(™) technology, based on the theory of coherence domains of water, is the most advanced application of quantum electrodynamics coherence suitable for transferring highly targeted and personalized electromagnetic signals to the living cells. Several experimental studies in aged rats confirm its beneficial action on vital cellular parameters while also optimizing the bioavailability and absorption of fundamental elements in cellular metabolism. Clinical observations have followed and have strengthened its applicability in healthy volunteers and in patients with complex diseases such as cardiovascular, neuromuscular, and metabolic disorders. Our pilot study on severely compromised, frail subjects corroborates its relevance. The delivery of correct frequencies has the potential to become a safe, very affordable, and effective therapeutic modality that is amenable to being integrated with pharmacological drugs, thus representing a substantial innovation in medical practice.
Collapse
|
9
|
Wei J, Sun J, Xu H, Shi L, Sun L, Zhang J. Effects of extremely low frequency electromagnetic fields on intracellular calcium transients in cardiomyocytes. Electromagn Biol Med 2014; 34:77-84. [DOI: 10.3109/15368378.2014.881744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Bellavite P, Marzotto M, Olioso D, Moratti E, Conforti A. High-dilution effects revisited. 2. Pharmacodynamic mechanisms. HOMEOPATHY 2014; 103:22-43. [DOI: 10.1016/j.homp.2013.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 11/30/2022]
|
11
|
Foletti A, Grimaldi S, Lisi A, Ledda M, Liboff AR. Bioelectromagnetic medicine: the role of resonance signaling. Electromagn Biol Med 2013; 32:484-99. [PMID: 23323834 DOI: 10.3109/15368378.2012.743908] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Only recently has the critical importance of electromagnetic (EM) field interactions in biology and medicine been recognized. We review the phenomenon of resonance signaling, discussing how specific frequencies modulate cellular function to restore or maintain health. The application of EM-tuned signals represents more than merely a new tool in information medicine. It can also be viewed in the larger context of EM medicine, the all-encompassing view that elevates the EM over the biochemical. The discovery by Zhadin that ultrasmall magnetic intensities are biologically significant suggests that EM signaling is endogenous to cell regulation, and consequently that the remarkable effectiveness of EM resonance treatments reflects a fundamental aspect of biological systems. The concept that organisms contain mechanisms for generating biologically useful electric signals is not new, dating back to the nineteenth century discovery of currents of injury by Matteucci. The corresponding modern-day version is that ion cyclotron resonance magnetic field combinations help regulate biological information. The next advance in medicine will be to discern and apply those EM signaling parameters acting to promote wellness, with decreasing reliance on marginal biochemical remediation and pharmaceuticals.
Collapse
Affiliation(s)
- Alberto Foletti
- Institute of Translational Pharmacology - CNR , Rome , Italy
| | | | | | | | | |
Collapse
|
12
|
Evaluations of the Effects of Extremely Low-Frequency Electromagnetic Fields on Growth and Antibiotic Susceptibility of Escherichia coli and Pseudomonas aeruginosa. Int J Microbiol 2012; 2012:587293. [PMID: 22577384 PMCID: PMC3335185 DOI: 10.1155/2012/587293] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/26/2012] [Indexed: 12/02/2022] Open
Abstract
We aimed to investigate the effects of exposure to extremely low-frequency electromagnetic fields (2 mT; 50 Hz) on the growth rate and antibiotic sensitivity of E. coli ATCC 25922 and P. aeruginosa ATCC 27853. The electromagnetic field treatment significantly influenced the growth rate of both strains when incubated in the presence of subinhibitory concentrations of kanamycin (1 μg/mL) and amikacin (0.5 μg/mL), respectively. In particular, at 4, 6, and 8 h of incubation the number of cells was significantly decreased in bacteria exposed to electromagnetic field when compared with the control. Additionally, at 24 h of incubation, the percentage of cells increased (P. aeruginosa∼42%; E. coli∼5%) in treated groups with respect to control groups suggesting a progressive adaptive response. By contrast, no remarkable differences were found in the antibiotic susceptibility and on the growth rate of both bacteria comparing exposed groups with control groups.
Collapse
|
13
|
Foletti A, Ledda M, D'Emilia E, Grimaldi S, Lisi A. Experimental Finding on the Electromagnetic Information Transfer of Specific Molecular Signals Mediated Through the Aqueous System on Two Human Cellular Models. J Altern Complement Med 2012; 18:258-61. [DOI: 10.1089/acm.2011.0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Mario Ledda
- Institute of Translational Pharmacology CNR, Rome, Italy
| | - Enrico D'Emilia
- Superior Institute for Workers’ Safety—INAIL DIPIA, Rome, Italy
| | | | - Antonella Lisi
- Institute of Translational Pharmacology CNR, Rome, Italy
| |
Collapse
|
14
|
Cifra M, Fields JZ, Farhadi A. Electromagnetic cellular interactions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 105:223-46. [PMID: 20674588 DOI: 10.1016/j.pbiomolbio.2010.07.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/21/2010] [Indexed: 12/14/2022]
Abstract
Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating.
Collapse
Affiliation(s)
- Michal Cifra
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|