1
|
Liman W, Oubahmane M, Lahcen NA, Hdoufane I, Cherqaoui D, Daoud R, El Allali A. Computational design of potent dimeric phenylthiazole NS5A inhibitors for hepatitis C virus. Sci Rep 2024; 14:31655. [PMID: 39738127 PMCID: PMC11686136 DOI: 10.1038/s41598-024-80082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 01/01/2025] Open
Abstract
Hepatitis C virus (HCV) presents a significant global health issue due to its widespread prevalence and the absence of a reliable vaccine for prevention. While significant progress has been achieved in therapeutic interventions since the disease was first identified, its resurgence underscores the need for innovative strategies to combat it. The nonstructural protein NS5A is crucial in the life cycle of the HCV, serving as a significant factor in both viral replication and assembly processes. This significance is highlighted by its inclusion in all existing approved HCV combination therapies. In this study, a quantitative structure-activity relationship (QSAR) was conducted to design new compounds with enhanced inhibitory activity against HCV. In this context, a set of 82 phenylthiazole derivatives was employed to construct a QSAR model using the Monte Carlo optimization technique. This model offers valuable insights into the specific structural characteristics that either enhance or reduce the inhibitory activity. These findings were used to design novel NS5A inhibitors. Moreover, molecular docking was used to predict the binding affinity of the newly designed inhibitors within the NS5A protein, followed by molecular dynamics simulations to investigate the dynamic interactions over time. Additionally, molecular mechanics generalized born surface area calculations were carried out to estimate the binding free energies of the inhibitor candidates, providing additional insights into their binding affinities and stabilities. Finally, the absorption, distribution, metabolism, excretion, and toxicity analysis were performed to assess the pharmacokinetic and toxicity profiles of the inhibitor candidates. This comprehensive approach provides a detailed understanding of the potential efficacy, stability, and safety of the screened drug candidates, offering valuable insights for their further development as potent therapeutic agents against HCV.
Collapse
Affiliation(s)
- Wissal Liman
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Mehdi Oubahmane
- Department of Chemistry, Faculty of Sciences Semlalia, BP 2390, Marrakech, Morocco
| | - Nouhaila Ait Lahcen
- Department of Chemistry, Faculty of Sciences Semlalia, BP 2390, Marrakech, Morocco
| | - Ismail Hdoufane
- Department of Chemistry, Faculty of Sciences Semlalia, BP 2390, Marrakech, Morocco
| | - Driss Cherqaoui
- Department of Chemistry, Faculty of Sciences Semlalia, BP 2390, Marrakech, Morocco
- Sustainable Materials Research Center (SUSMAT-RC), Mohammed VI Polytechnic University, 43150, Benguerir, Morocco
| | - Rachid Daoud
- Chemical and Biochemical Sciences, Green Process Engineering, University Mohammed VI Polytechnic, Ben Guerir, Morocco
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, University Mohammed VI Polytechnic, Ben Guerir, Morocco.
| |
Collapse
|
2
|
Goyal S, Rani P, Chahar M, Hussain K, Kumar P, Sindhu J. Quantitative structure activity relationship studies of androgen receptor binding affinity of endocrine disruptor chemicals with index of ideality of correlation, their molecular docking, molecular dynamics and ADME studies. J Biomol Struct Dyn 2023; 41:13616-13631. [PMID: 37010991 DOI: 10.1080/07391102.2023.2193991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/03/2023] [Indexed: 04/04/2023]
Abstract
Endocrine disrupter chemicals (EDCs) are both natural and man-made chemicals that mimic, block or interfere with human hormonal system. In the present manuscript, QSAR modeling was performed for the androgen disruptors that interfere with biosynthesis, metabolism or action of androgens that causes adverse effects on male reproductive system. A set of 96 EDCs that exhibited affinity towards androgen receptors (Log RBA) in rats were employed for carrying out QSAR studies using Hybrid descriptors (combination of HFG and SMILES) through Monte Carlo Optimization. Using index of ideality of correlation (TF2), five splits were formed and predictability of five models resulting from these splits was assessed by various validation parameters. Models resulted from first split was the top most one with R2validation = 0.7878. Structural attributes responsible for change in endpoint were studied by employing correlation weights of structural attributes. In order to further validate the model, new EDCs were designed using these attributes. In silico molecular modelling studies were performed to assess the detailed interactions with the receptor. The binding energies of all the designed compounds were observed to be better than lead and are in the range of -10.46 to -14.80. Molecular dynamics simulation of 100 ns was performed for ED01 and NED05. The results revealed that the protein-ligand complex bearing NED05 was more stable than lead ED01 exhibiting better interactions with the receptor. Further, in an attempt to assess their metabolism, ADME studies were evaluated using SwissADME. The developed model enables to predict the characteristics of designed compounds in an authentic way.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Surbhi Goyal
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Payal Rani
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Monika Chahar
- Department of Chemistry, Baba Mastnath University, Rohtak, India
| | - Khalid Hussain
- Department of AS&H, Mewat Engineering College, Palla, Nuh, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| |
Collapse
|
3
|
Quantitative structure-activity relationship modeling for predication of inhibition potencies of imatinib derivatives using SMILES attributes. Sci Rep 2022; 12:21708. [PMID: 36522400 PMCID: PMC9755126 DOI: 10.1038/s41598-022-26279-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic myelogenous leukemia (CML) which is resulted from the BCR-ABL tyrosine kinase (TK) chimeric oncoprotein, is a malignant clonal disorder of hematopoietic stem cells. Imatinib is used as an inhibitor of BCR-ABL TK in the treatment of CML patients. The main object of the present manuscript is focused on constructing quantitative activity relationships (QSARs) models for the prediction of inhibition potencies of a large series of imatinib derivatives against BCR-ABL TK. Herren, the inbuilt Monte Carlo algorithm of CORAL software is employed to develop QSAR models. The SMILES notations of chemical structures are used to compute the descriptor of correlation weights (CWs). QSAR models are established using the balance of correlation method with the index of ideality of correlation (IIC). The data set of 306 molecules is randomly divided into three splits. In QSAR modeling, the numerical value of R2, Q2, and IIC for the validation set of splits 1 to 3 are in the range of 0.7180-0.7755, 0.6891-0.7561, and 0.4431-0.8611 respectively. The numerical result of [Formula: see text] > 0.5 for all three constructed models in the Y-randomization test validate the reliability of established models. The promoters of increase/decrease for pIC50 are recognized and used for the mechanistic interpretation of structural attributes.
Collapse
|
4
|
Toropov AA, Toropova AP, Achary PGR, Raškova M, Raška I. The searching for agents for Alzheimer's disease treatment via the system of self-consistent models. Toxicol Mech Methods 2022; 32:549-557. [PMID: 35287529 DOI: 10.1080/15376516.2022.2053918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Robust quantitative structure-activity relationships (QSARs) for hBACE-1 inhibitors (pIC50) for a large database (n = 1706) are established. New statistical criteria of the predictive potential of models are suggested and tested. These criteria are the index of ideality of correlation (IIC) and the correlation intensity index (CII). The system of self-consistent models is a new approach to validate the predictive potential of QSAR-models. The statistical quality of models obtained using the CORAL software (http://www.insilico.eu/coral) for the validation sets is characterized by the average determination coefficient R2v= 0.923, and RMSE =0.345. Three new promising molecular structures which can become inhibitors hBACE-1 are suggested.
Collapse
Affiliation(s)
- Andrey A Toropov
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Alla P Toropova
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - P Ganga Raju Achary
- Department of Chemistry, Institute of Technical Education and Research(ITER), Siksha 'O'Anusandhan University, Bhubaneswar, Odisha-751030, India
| | - Maria Raškova
- 3rd Medical Department, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 1, 12808 Prague 2, Czech Republic
| | - Ivan Raška
- 3rd Medical Department, 1st Faculty of Medicine, Charles University in Prague, U Nemocnice 1, 12808 Prague 2, Czech Republic
| |
Collapse
|
5
|
Kumar P, Kumar A. Unswerving modeling of hepatotoxicity of cadmium containing quantum dots using amalgamation of quasiSMILES, index of ideality of correlation, and consensus modeling. Nanotoxicology 2021; 15:1199-1214. [PMID: 34961428 DOI: 10.1080/17435390.2021.2008039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Liver toxicity of quantum dots varies with size, concentration, and other structural as well as experimental parameters. For modeling hepatotoxicity, the eclectic data associated with cadmium containing quantum dots have been used in the creation of quasiSMILES for their representation. The core diameter is normalized for wider applicability and the index of the ideality of correlation is applied to construct the better quantitative features toxicity relationship models. Total eight splits are created and the best model is obtained through split 1 with better prediction criteria of validation set objects. The values of all statistical criteria used in the quality determination of a QSAR model are within the specified range for all the eight toxicity models developed here. Factors like TGA ligand and 0.6-0.7 nm diameter are favorable for liver toxicity while L-cysteine ligand and 0.5-0.6 nm core diameter are helpful in the reduction of toxicity. Further, the intelligent consensus modeling process forms a total of 40 individual and 20 consensus models and the best individual and consensus models are 'Good' in MAE-based criteria. The consensus modeling enhances the prediction ability as well as the accuracy of the developed models and increases the applicability space of the built models for hepatotoxicity prediction of quantum dots.
Collapse
Affiliation(s)
- Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, India
| |
Collapse
|
6
|
Lotfi S, Ahmadi S, Kumar P. The Monte Carlo approach to model and predict the melting point of imidazolium ionic liquids using hybrid optimal descriptors. RSC Adv 2021; 11:33849-33857. [PMID: 35497322 PMCID: PMC9042335 DOI: 10.1039/d1ra06861j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Ionic liquids (ILs) have captured intensive attention owing to their unique properties such as high thermal stability, negligible vapour pressure, high dissolution capacity and high ionic conductivity as well as their wide applications in various scientific fields including organic synthesis, catalysis, and industrial extraction processes. Many applications of ionic liquids (ILs) rely on the melting point (Tm). Therefore, in the present manuscript, the melting points of imidazolium ILs are studied employing a quantitative structure–property relationship (QSPR) approach to develop a model for predicting the melting points of a data set of imidazolium ILs. The Monte Carlo algorithm of CORAL software is applied to build up a robust QSPR model to calculate the values Tm of 353 imidazolium ILs. Using a combination of SMILES and hydrogen-suppressed molecular graphs (HSGs), the hybrid optimal descriptor is computed and used to generate the QSPR models. Internal and external validation parameters are also employed to evaluate the predictability and reliability of the QSPR model. Four splits are prepared from the dataset and each split is randomly distributed into four sets i.e. training set (≈33%), invisible training set (≈31%), calibration set (≈16%) and validation set (≈20%). In QSPR modelling, the numerical values of various statistical features of the validation sets such as RValidation2, QValidation2, and IICValidation are found to be in the range of 0.7846–0.8535, 0.7687–0.8423 and 0.7424–0.8982, respectively. For mechanistic interpretation, the structural attributes which are responsible for the increase/decrease of Tm are also extracted. The melting points of imidazolium ILs are studied employing a quantitative structure–property relationship (QSPR) approach to develop a model for predicting the melting points of a data set of imidazolium ILs.![]()
Collapse
Affiliation(s)
- Shahram Lotfi
- Department of Chemistry, Payame Noor University (PNU) 19395-4697 Tehran Iran
| | - Shahin Ahmadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra Haryana 136119 India
| |
Collapse
|
7
|
Exploring biological efficacy of novel benzothiazole linked 2,5-disubstituted-1,3,4-oxadiazole hybrids as efficient α-amylase inhibitors: Synthesis, characterization, inhibition, molecular docking, molecular dynamics and Monte Carlo based QSAR studies. Comput Biol Med 2021; 138:104876. [PMID: 34598068 DOI: 10.1016/j.compbiomed.2021.104876] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022]
Abstract
In an effort to explore a class of novel antidiabetic agents, we have made an effort to synergize the α-amylase inhibitory potential of 1,3-benzothiazole and 1,3,4-oxadiazole scaffolds by combining the two into a single structure via an ether linkage. The structure of synthesized benzothiazole clubbed oxadiazole derivatives are established by different spectral techniques. The synthesized hybrids are evaluated for their in vitro inhibitory potential against α-amylase. Compound 8f is found to be the most potent with a significant inhibition (87.5 ± 0.74% at 50 μg/mL, 82.27 ± 1.85% at 25 μg/mL and 79.94 ± 1.88% at 12.5 μg/mL) when compared to positive control acarbose (77.96 ± 2.06%, 71.17 ± 0.60%, 67.24 ± 1.16% at 50 μg/mL, 25 μg/mL and 12.5 μg/mL concentration). Molecular docking of the most potent enzyme inhibitor, 8f, shows promising interaction with the binding site of biological macromolecule Aspergillus oryzae α-amylase (PDB ID: 7TAA) and human pancreatic α-amylase (PDB ID: 3BAJ). To a step further, in-depth QSAR studies show a significant correlation between the experimental and the predicted inhibitory activities with the best Rvalidation2= 0.8701. The developed QSAR model can provide ample information about the structural features responsible for the increase and decrease of inhibitory activity. The mechanistic interpretation of the structure-activity relationship (SAR) is done with the help of combined computational calculations i.e. molecular docking and QSAR. Finally, molecular dynamic simulations are performed to get an insight into the binding mode of the most potent derivative with α-amylase from A. oryzae (PDB ID: 7TAA) and human pancreas (PDB ID: 3BAJ).
Collapse
|
8
|
Lotfi S, Ahmadi S, Kumar P. A hybrid descriptor based QSPR model to predict the thermal decomposition temperature of imidazolium ionic liquids using Monte Carlo approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Duhan M, Sindhu J, Kumar P, Devi M, Singh R, Kumar R, Lal S, Kumar A, Kumar S, Hussain K. Quantitative structure activity relationship studies of novel hydrazone derivatives as α-amylase inhibitors with index of ideality of correlation. J Biomol Struct Dyn 2020; 40:4933-4953. [PMID: 33357037 DOI: 10.1080/07391102.2020.1863861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present manuscript describes the synthesis, α-amylase inhibition, in silico studies and in-depth quantitative structure-activity relationship (QSAR) of a library of aroyl hydrazones based on benzothiazole skeleton. All the compounds of the developed library are characterized by various spectral techniques. α-Amylase inhibitory potential of all compounds has been explored, where compound 7n exhibits remarkable α-amylase inhibition of 87.5% at 50 µg/mL. Robust QSAR models are made by using the balance of correlation method in CORAL software. The chemical structures at different concentration with optimal descriptors are represented by SMILES. A data set of 66 SMILES of 22 hydrazones at three distinct concentrations are prepared. The significance of the index of ideality of correlation (IIC) with applicability domain (AD) is also studied at depth. A QSAR model with best Rvalidation2 = 0.8587 for split 1 is considered as a leading model. The outliers and promoters of increase and decrease of endpoint are also extracted. The binding modes of the most active compound, that is, 7n in the active site of Aspergillus oryzae α-amylase (PDB ID: 7TAA) are also explored by in silico molecular docking studies. Compound 7n displays high resemblance in binding mode and pose with the standard drug acarbose. Molecular dynamics simulations performed on protein-ligand complex for 100 ns, the protein gets stabilised after 20 ns and remained below 2 Å for the remaining simulation. Moreover, the deviation observed in RMSF during simulation for each amino acid residue with respect to Cα carbon atom is insignificant.
Collapse
Affiliation(s)
- Meenakshi Duhan
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, India
| | - Sudhir Kumar
- Department of MBB&B, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Khalid Hussain
- Department of Applied Sciences and Humanities, Mewat Engineering College, Nuh, India
| |
Collapse
|
10
|
Toropov AA, Toropova AP, Selvestrel G, Baderna D, Benfenati E. Prediction of No Observed Adverse Effect Concentration for inhalation toxicity using Monte Carlo approach. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2020; 31:1-12. [PMID: 33179981 DOI: 10.1080/1062936x.2020.1841827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Ideal correlation is one variable model based on so-called optimal descriptors calculated with simplified molecular input-line entry systems (SMILES). The optimal descriptor is calculated according to the index of ideality of correlation, a new criterion of predictive potential of quantitative structure-property/activity relationships (QSPRs/QSARs). The aim of the present study was the building and estimation of models for inhalation toxicity as No Observed Adverse Effect Concentration (NOAEC) based on the OECD guidelines 413. Three random distributions into the training set and validation set were examined. In practice, a structured training set that contains active training set, passive training set and calibration set is used as the training set. The statistical characteristics of the best model for negative logarithm of NOAEC (pNOAEC) are for training set n = 108, average r 2 = 0.52 + 0.62 + 0.76/3 = 0.63 and for validation set n = 35, r 2 = 0.73.
Collapse
Affiliation(s)
- A A Toropov
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - A P Toropova
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - G Selvestrel
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - D Baderna
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| | - E Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano, Italy
| |
Collapse
|
11
|
How the CORAL software can be used to select compounds for efficient treatment of neurodegenerative diseases? Toxicol Appl Pharmacol 2020; 408:115276. [DOI: 10.1016/j.taap.2020.115276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/21/2020] [Accepted: 10/07/2020] [Indexed: 12/26/2022]
|
12
|
Quantitative structure toxicity analysis of ionic liquids toward acetylcholinesterase enzyme using novel QSTR models with index of ideality of correlation and correlation contradiction index. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114055] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Kumar A, Kumar P. Identification of good and bad fragments of tricyclic triazinone analogues as potential PKC-θ inhibitors through SMILES–based QSAR and molecular docking. Struct Chem 2020. [DOI: 10.1007/s11224-020-01629-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Jafari K, Fatemi MH. A new approach to model isobaric heat capacity and density of some nitride-based nanofluids using Monte Carlo method. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Kumar A, Kumar P. Construction of pioneering quantitative structure activity relationship screening models for abuse potential of designer drugs using index of ideality of correlation in monte carlo optimization. Arch Toxicol 2020; 94:3069-3086. [DOI: 10.1007/s00204-020-02828-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023]
|
16
|
Kumar A, Sindhu J, Kumar P. In-silico identification of fingerprint of pyrazolyl sulfonamide responsible for inhibition of N-myristoyltransferase using Monte Carlo method with index of ideality of correlation. J Biomol Struct Dyn 2020; 39:5014-5025. [DOI: 10.1080/07391102.2020.1784286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
17
|
Bagri K, Kumar A, Nimbhal M, Kumar P. Index of ideality of correlation and correlation contradiction index: a confluent perusal on acetylcholinesterase inhibitors. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1770753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kiran Bagri
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Manisha Nimbhal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
18
|
The index of ideality of correlation: A statistical yardstick for better QSAR modeling of glucokinase activators. Struct Chem 2019. [DOI: 10.1007/s11224-019-01468-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
19
|
Toropova AP, Toropov AA. Whether the Validation of the Predictive Potential of Toxicity Models is a Solved Task? Curr Top Med Chem 2019; 19:2643-2657. [PMID: 31702504 DOI: 10.2174/1568026619666191105111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/23/2022]
Abstract
Different kinds of biological activities are defined by complex biochemical interactions, which are termed as a "mathematical function" not only of the molecular structure but also for some additional circumstances, such as physicochemical conditions, interactions via energy and information effects between a substance and organisms, organs, cells. These circumstances lead to the great complexity of prediction for biochemical endpoints, since all "details" of corresponding phenomena are practically unavailable for the accurate registration and analysis. Researchers have not a possibility to carry out and analyse all possible ways of the biochemical interactions, which define toxicological or therapeutically attractive effects via direct experiment. Consequently, a compromise, i.e. the development of predictive models of the above phenomena, becomes necessary. However, the estimation of the predictive potential of these models remains a task that is solved only partially. This mini-review presents a collection of attempts to be used for the above-mentioned task, two special statistical indices are proposed, which may be a measure of the predictive potential of models. These indices are (i) Index of Ideality of Correlation; and (ii) Correlation Contradiction Index.
Collapse
Affiliation(s)
- Alla P Toropova
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| | - Andrey A Toropov
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via La Masa 19, 20156 Milano, Italy
| |
Collapse
|
20
|
Golbraikh A. Value of p-Value. Mol Inform 2019; 38:e1800152. [PMID: 31188542 DOI: 10.1002/minf.201800152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/07/2019] [Indexed: 11/09/2022]
Abstract
The goal of this manuscript is to discuss important aspects of external validation of classification and category Quantitative Structure - Activity/Property/Toxicity Relationship QS/A/P/T/R models that to the best of author's knowledge are not addressed in publications. Statistical significance (in terms of p-value) and accuracy of prediction (in terms of Correct Classification Rate (CCR)) of external validation set compounds are among most important characteristics of the models. We assert that in most cases the models built for classification or category response variable should be statistically significant and predictive for each class or category. We show that three thresholds of the number of compounds in each class or category of the external validation sets should be satisfied. 1) The p-value criterion can never be satisfied, if the number of compounds is below the first threshold. 2) If the number of compounds is between the first and the second thresholds, p-value criterion should be used. 3) If it is higher than the third threshold, classification or category accuracy criterion should be used. 4) If the number of compounds is between second and third thresholds, either one or the other criterion should be used depending on the value of p-value. 5) When the number of compounds in the class approaches infinity, the maximum relative error of prediction approaches the relative expected error. The results are of interest in other areas of multidimensional data analysis.
Collapse
Affiliation(s)
- Alexander Golbraikh
- Laboratory for Molecular Modeling, University of North Carolina at Chapel Hill, CB #7360, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Toropov AA, Toropova AP. QSAR as a random event: criteria of predictive potential for a chance model. Struct Chem 2019. [DOI: 10.1007/s11224-019-01361-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Toropov AA, Toropova AP, Selvestrel G, Benfenati E. Idealization of correlations between optimal simplified molecular input-line entry system-based descriptors and skin sensitization. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:447-455. [PMID: 31124730 DOI: 10.1080/1062936x.2019.1615547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
The Index of Ideality of Correlation (IIC) is a new criterion of the predictive potential for quantitative structure-property/activity relationships. The value of the IIC is a mathematical function sensitive to the value of the correlation coefficient and dispersion (expressed via mean absolute error). The IIC has been applied to develop QSAR models for skin sensitization achieving good predictive potential. The 'ideal correlation' is based on elementary fragments of simplified molecular input-line entry system (SMILES) and on the taking into account of the total numbers of nitrogen, oxygen, sulphur and phosphorus in the molecule.
Collapse
Affiliation(s)
- A A Toropov
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano , Italy
| | - A P Toropova
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano , Italy
| | - G Selvestrel
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano , Italy
| | - E Benfenati
- a Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences , Istituto di Ricerche Farmacologiche Mario Negri IRCCS , Milano , Italy
| |
Collapse
|