Kwon D, Seo H, Kim SH, Chung KW, Lee J, Jung YS. Fasting potentiates diclofenac-induced liver injury via inductions of oxidative/endoplasmic reticulum stresses and apoptosis, and inhibition of autophagy by depleting hepatic glutathione in mice.
Food Chem Toxicol 2024;
187:114624. [PMID:
38556155 DOI:
10.1016/j.fct.2024.114624]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Diclofenac, a widely used non-steroidal anti-inflammatory drug, can cause liver damage via its metabolic activation by hepatic CYP450s and UGT2B7. Fasting can affect drug-induced liver injury by modulating the hepatic metabolism, but its influence on diclofenac hepatotoxicity is unknown. Thus, we investigated diclofenac-induced liver damage after fasting in mice, and the cellular events were examined. Male ICR mice fasted for 16 h showed the elevation of CYP3A11, but the decreases of UGT2B7, glutathione (GSH), and GSH S-transferase-μ/-π levels in the livers. Diclofenac (200 mg/kg) injection into the mice after 16-h fasting caused more significant liver damage compared to that in the diclofenac-treated fed mice, as shown by the higher serum ALT and AST activities. Diclofenac-promoted hepatic oxidative stress (oxidized proteins, 4-hydroxynonenal, and malondialdehyde), endoplasmic reticulum (ER) stress (BiP, ATF6, and CHOP), and apoptosis (cleaved caspase-3 and cleaved PARP) were enhanced by fasting. Autophagic degradation was inhibited in the diclofenac-treated fasting mice compared to that of the corresponding fed mice. The results suggest that fasting can make the liver more susceptible to diclofenac toxicity by lowering GSH-mediated detoxification; increased oxidative/ER stresses and apoptosis and suppressed autophagic degradation may be the cellular mechanisms of the aggravated diclofenac hepatotoxicity under fasting conditions.
Collapse