1
|
Shaw T, Barr FG, Üren A. The PAX Genes: Roles in Development, Cancer, and Other Diseases. Cancers (Basel) 2024; 16:1022. [PMID: 38473380 PMCID: PMC10931086 DOI: 10.3390/cancers16051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Since their 1986 discovery in Drosophila, Paired box (PAX) genes have been shown to play major roles in the early development of the eye, muscle, skeleton, kidney, and other organs. Consistent with their roles as master regulators of tissue formation, the PAX family members are evolutionarily conserved, regulate large transcriptional networks, and in turn can be regulated by a variety of mechanisms. Losses or mutations in these genes can result in developmental disorders or cancers. The precise mechanisms by which PAX genes control disease pathogenesis are well understood in some cases, but much remains to be explored. A deeper understanding of the biology of these genes, therefore, has the potential to aid in the improvement of disease diagnosis and the development of new treatments.
Collapse
Affiliation(s)
- Taryn Shaw
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20001, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20001, USA
| |
Collapse
|
2
|
Nakazawa K, Shaw T, Song YK, Kouassi-Brou M, Molotkova A, Tiwari PB, Chou HC, Wen X, Wei JS, Deniz E, Toretsky JA, Keller C, Barr FG, Khan J, Üren A. Piperacetazine Directly Binds to the PAX3::FOXO1 Fusion Protein and Inhibits Its Transcriptional Activity. CANCER RESEARCH COMMUNICATIONS 2023; 3:2030-2043. [PMID: 37732905 PMCID: PMC10557868 DOI: 10.1158/2767-9764.crc-23-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/17/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
The tumor-specific chromosomal translocation product, PAX3::FOXO1, is an aberrant fusion protein that plays a key role for oncogenesis in the alveolar subtype of rhabdomyosarcoma (RMS). PAX3::FOXO1 represents a validated molecular target for alveolar RMS and successful inhibition of its oncogenic activity is likely to have significant clinical applications. Even though several PAX3::FOXO1 function-based screening studies have been successfully completed, a directly binding small-molecule inhibitor of PAX3::FOXO1 has not been reported. Therefore, we screened small-molecule libraries to identify compounds that were capable of directly binding to PAX3::FOXO1 protein using surface plasmon resonance technology. Compounds that directly bound to PAX3::FOXO1 were further evaluated in secondary transcriptional activation assays. We discovered that piperacetazine can directly bind to PAX3::FOXO1 protein and inhibit fusion protein-derived transcription in multiple alveolar RMS cell lines. Piperacetazine inhibited anchorage-independent growth of fusion-positive alveolar RMS cells but not embryonal RMS cells. On the basis of our findings, piperacetazine is a molecular scaffold upon which derivatives could be developed as specific inhibitors of PAX3::FOXO1. These novel inhibitors could potentially be evaluated in future clinical trials for recurrent or metastatic alveolar RMS as novel targeted therapy options. SIGNIFICANCE RMS is a malignant soft-tissue tumor mainly affecting the pediatric population. A subgroup of RMS with worse prognosis harbors a unique chromosomal translocation creating an oncogenic fusion protein, PAX3::FOXO1. We identified piperacetazine as a direct inhibitor of PAX3::FOXO1, which may provide a scaffold for designing RMS-specific targeted therapy.
Collapse
Affiliation(s)
- Kay Nakazawa
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Taryn Shaw
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Young K. Song
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Marilyn Kouassi-Brou
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Anna Molotkova
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Purushottam B. Tiwari
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Hsien-Chao Chou
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Xinyu Wen
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jun S. Wei
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Emre Deniz
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Jeffrey A. Toretsky
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Hillsboro, Oregon
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| |
Collapse
|
3
|
Selim O, Song C, Kumar A, Phelan R, Singh A, Federman N. A review of the therapeutic potential of histone deacetylase inhibitors in rhabdomyosarcoma. Front Oncol 2023; 13:1244035. [PMID: 37664028 PMCID: PMC10471891 DOI: 10.3389/fonc.2023.1244035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
This review aims to summarize the putative role of histone deacetylases (HDACs) in rhabdomyosarcoma (RMS) and the effects of HDAC inhibitors (HDACi) on RMS by elucidating and highlighting known oncogenic pathways, mechanisms of resistance, and the synergistic potential of histone deacetylase inhibitors. We searched two databases (PubMed and Google Scholar) for the keywords "Rhabdomyosarcoma, histone deacetylase, histone deacetylase inhibitors." We excluded three publications that did not permit access to the full text to review and those that focus exclusively on pleiomorphic RMS in adults. Forty-seven papers met the inclusion criteria. This review highlights that HDACi induce cytotoxicity, cell-cycle arrest, and oxidative stress in RMS cells. Ultimately, HDACi have been shown to increase apoptosis and the cessation of embryonal and alveolar RMS proliferation in vivo and in vitro, both synergistically and on its own. HDACi contain potent therapeutic potential against RMS. This review discusses the significant findings and the biological mechanisms behind the anti-cancer effects of HDACi. Additionally, this review highlights important clinical trials assessing the efficacy of HDACi in sarcomas.
Collapse
Affiliation(s)
- Omar Selim
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Clara Song
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Amy Kumar
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Rebecca Phelan
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Arun Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Noah Federman
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Di Bello E, Sian V, Bontempi G, Zwergel C, Fioravanti R, Noce B, Castiello C, Tomassi S, Corinti D, Passeri D, Pellicciari R, Mercurio C, Varasi M, Altucci L, Tripodi M, Strippoli R, Nebbioso A, Valente S, Mai A. Novel pyridine-containing histone deacetylase inhibitors strongly arrest proliferation, induce apoptosis and modulate miRNAs in cancer cells. Eur J Med Chem 2023; 247:115022. [PMID: 36549114 DOI: 10.1016/j.ejmech.2022.115022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
After over 30 years of research, the development of HDAC inhibitors led to five FDA/Chinese FDA-approved drugs and many others under clinical or preclinical investigation to treat cancer and non-cancer diseases. Herein, based on our recent development of pyridine-based isomers as HDAC inhibitors, we report a series of novel 5-acylamino-2-pyridylacrylic- and -picolinic hydroxamates and 2'-aminoanilides 5-8 as anticancer agents. The hydroxamate 5d proved to be quite HDAC3/6-selective exhibiting IC50 values of 80 and 11 nM, respectively, whereas the congener 5e behaved as inhibitor of HDAC1-3, -6, -8, and -10 (class I/IIb-selective inhibitor) at nanomolar level. Compound 5e provided a huge antiproliferative activity (nanomolar IC50 values) against both haematological and solid cancer cell lines. In leukaemia U937 cells, the hydroxamate 5d and the 2'-aminoanilide 8f induced remarkable cell death after 48 h, with 76% and 100% pre-G1 phase arrest, respectively, showing a stronger effect with respect to SAHA and MS-275 used as reference compounds. In U937 cells, the highest dose- and time-dependent cytodifferentiation was obtained by the 2'-aminoanilide 8d (up to 35% of CD11c positive/propidium iodide negative cells at 5 μM for 48 h). The same 8d and the hydroxamates 5d and 5e were the most effective in inducing p21 protein expression in the same cell line. Mechanistically, 5d, 5e, 8d and 8f increased mRNA expression of p21, BAX and BAK, downregulated cyclin D1 and BCL-2 and modulated pro- and anti-apoptotic microRNAs towards apoptosis induction. Finally, 5e strongly arrested proliferation in nine different haematological cancer cell lines, with dual-digit nanomolar potency towards MV4-11, Kasumi-1, and NB4, being more potent than mocetinostat, used as reference drug.
Collapse
Affiliation(s)
- Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Veronica Sian
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Giulio Bontempi
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carola Castiello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Stefano Tomassi
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniela Passeri
- TES Pharma S.r.l., Via P. Togliatti 20, Corciano, 06073, Perugia, Italy
| | | | - Ciro Mercurio
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Lucia Altucci
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, 80138, Naples, Italy
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Gene Expression Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Via Portuense, 292, 00149, Rome, Italy.
| | - Angela Nebbioso
- Department of Precision Medicine, "Luigi Vanvitelli" University of Campania, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy; Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
5
|
Lu X, Liu M, Yang J, Yi Q, Zhang X. Panobinostat enhances NK cell cytotoxicity in soft tissue sarcoma. Clin Exp Immunol 2022; 209:127-139. [PMID: 35867577 DOI: 10.1093/cei/uxac068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
Sarcoma is a rare and heterogeneous class of mesenchymal malignancies with poor prognosis. Panobinostat (LBH589) as one of histone deacetylase (HDAC) inhibitors, has demonstrated anti-tumor activity in patients with sarcoma, but its mechanisms remains unclear. Here, we found that LBH589 alone inhibited the proliferation and colony formation of soft tissue sarcoma(STS) cell lines. Transcriptome analysis showed that treatment with LBH589 augmented the NK cell mediated cytotoxicity. Quantitative real-time PCR and flow cytometric analysis (FACS) further confirmed that LBH589 increased the expression of NKG2D ligands MICA/MICB. Mechanistically, LBH589 activated the Wnt/β-catenin pathway by upregulating the histone acetylation in β-catenin promoter. In vitro co-culture experiments and in vivo animal experiments showed that LBH589 increased the cytotoxicity of natural killer (NK) cells while Wnt/β-catenin inhibitor decreased the effects. Our findings suggests that LBH589 facilitates the anti-tumor effect of NK cells, highlights LBH589 an effective assistance drug in NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Xiuxia Lu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Que Yi
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| |
Collapse
|
6
|
Lanzi C, Cassinelli G. Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochem Pharmacol 2022; 198:114944. [DOI: 10.1016/j.bcp.2022.114944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
7
|
MS-275 (Entinostat) Promotes Radio-Sensitivity in PAX3-FOXO1 Rhabdomyosarcoma Cells. Int J Mol Sci 2021; 22:ijms221910671. [PMID: 34639012 PMCID: PMC8508838 DOI: 10.3390/ijms221910671] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. About 25% of RMS expresses fusion oncoproteins such as PAX3/PAX7-FOXO1 (fusion-positive, FP) while fusion-negative (FN)-RMS harbors RAS mutations. Radiotherapy (RT) plays a crucial role in local control but metastatic RMS is often radio-resistant. HDAC inhibitors (HDACi) radio-sensitize different cancer cells types. Thus, we evaluated MS-275 (Entinostat), a Class I and IV HDACi, in combination with RT on RMS cells in vitro and in vivo. MS-275 reversibly hampered cell survival in vitro in FN-RMS RD (RASmut) and irreversibly in FP-RMS RH30 cell lines down-regulating cyclin A, B, and D1, up-regulating p21 and p27 and reducing ERKs activity, and c-Myc expression in RD and PI3K/Akt/mTOR activity and N-Myc expression in RH30 cells. Further, MS-275 and RT combination reduced colony formation ability of RH30 cells. In both cell lines, co-treatment increased DNA damage repair inhibition and reactive oxygen species formation, down-regulated NRF2, SOD, CAT and GPx4 anti-oxidant genes and improved RT ability to induce G2 growth arrest. MS-275 inhibited in vivo growth of RH30 cells and completely prevented the growth of RT-unresponsive RH30 xenografts when combined with radiation. Thus, MS-275 could be considered as a radio-sensitizing agent for the treatment of intrinsically radio-resistant PAX3-FOXO1 RMS.
Collapse
|
8
|
Warnon C, Bouhjar K, Ninane N, Verhoyen M, Fattaccioli A, Fransolet M, Lambert de Rouvroit C, Poumay Y, Piel G, Mottet D, Debacq-Chainiaux F. HDAC2 and 7 down-regulation induces senescence in dermal fibroblasts. Aging (Albany NY) 2021; 13:17978-18005. [PMID: 34253688 PMCID: PMC8351730 DOI: 10.18632/aging.203304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Originally simply reported to be in a stable and irreversible growth arrest in vitro, senescent cells are now clearly associated with normal and pathological ageing in vivo. They are characterized by several biomarkers and changes in gene expression that may depend on epigenetic factors, such as histone acetylation, involving a balance between histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, we investigate the expression and the role of HDACs on the senescent phenotype of dermal fibroblasts. We report that during replicative senescence, most canonical HDACs are less expressed. Moreover, treatment with SAHA, a histone deacetylase inhibitor (HDACi) also known as Vorinostat, or the specific downregulation of HDAC2 or HDAC7 by siRNA, induces the appearance of senescence biomarkers of dermal fibroblasts. Conversely, the ectopic re-expression of HDAC7 by lentiviral transduction in pre-senescent dermal fibroblasts extends their proliferative lifespan. These results demonstrate that HDACs expression can modulate the senescent phenotype, highlighting their pharmaceutical interest in the context of healthy ageing.
Collapse
Affiliation(s)
- Céline Warnon
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Karim Bouhjar
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Noëlle Ninane
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Mathilde Verhoyen
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Antoine Fattaccioli
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Maude Fransolet
- URBC, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | | | - Yves Poumay
- URPHYM, Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège, Belgium
| | - Denis Mottet
- University of Liège, GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, Liège, Belgium
| | | |
Collapse
|
9
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
10
|
Histone Deacetylase Expressions in Hepatocellular Carcinoma and Functional Effects of Histone Deacetylase Inhibitors on Liver Cancer Cells In Vitro. Cancers (Basel) 2019; 11:cancers11101587. [PMID: 31635225 PMCID: PMC6826839 DOI: 10.3390/cancers11101587] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/05/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause for deaths worldwide. Histone deacetylase (HDAC) inhibition (HDACi) is emerging as a promising therapeutic strategy. However, most pharmacological HDACi unselectively block different HDAC classes and their molecular mechanisms of action are only incompletely understood. The aim of this study was to systematically analyze expressions of different HDAC classes in HCC cells and tissues and to functionally analyze the effect of the HDACi suberanilohydroxamic acid (SAHA) and trichostatin A (TSA) on the tumorigenicity of HCC cells. The gene expression of all HDAC classes was significantly increased in human HCC cell lines (Hep3B, HepG2, PLC, HuH7) compared to primary human hepatocytes (PHH). The analysis of HCC patient data showed the increased expression of several HDACs in HCC tissues compared to non-tumorous liver. However, there was no unified picture of regulation in three different HCC patient datasets and we observed a strong variation in the gene expression of different HDACs in tumorous as well as non-tumorous liver. Still, there was a strong correlation in the expression of HDAC class IIa (HDAC4, 5, 7, 9) as well as HDAC2 and 8 (class I) and HDAC10 (class IIb) and HDAC11 (class IV) in HCC tissues of individual patients. This might indicate a common mechanism of the regulation of these HDACs in HCC. The Cancer Genome Atlas (TCGA) dataset analysis revealed that HDAC4, HDAC7 and HDAC9 as well as HDAC class I members HDAC1 and HDAC2 is significantly correlated with patient survival. Furthermore, we observed that SAHA and TSA reduced the proliferation, clonogenicity and migratory potential of HCC cells. SAHA but not TSA induced features of senescence in HCC cells. Additionally, HDACi enhanced the efficacy of sorafenib in killing sorafenib-susceptible cells. Moreover, HDACi reestablished sorafenib sensitivity in resistant HCC cells. In summary, HDACs are significantly but differently increased in HCC, which may be exploited to develop more targeted therapeutic approaches. HDACi affect different facets of the tumorigenicity of HCC cells and appears to be a promising therapeutic approach alone or in combination with sorafenib.
Collapse
|
11
|
Marampon F, Di Nisio V, Pietrantoni I, Petragnano F, Fasciani I, Scicchitano BM, Ciccarelli C, Gravina GL, Festuccia C, Del Fattore A, Tombolini M, De Felice F, Musio D, Cecconi S, Tini P, Maddalo M, Codenotti S, Fanzani A, Polimeni A, Maggio R, Tombolini V. Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Belinostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines. Cancer Lett 2019; 461:90-101. [DOI: 10.1016/j.canlet.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
|
12
|
Interplay between Epigenetics, Expression of Estrogen Receptor- α, HER2/ERBB2 and Sensitivity of Triple Negative Breast Cancer Cells to Hormonal Therapy. Cancers (Basel) 2018; 11:cancers11010013. [PMID: 30583472 PMCID: PMC6356506 DOI: 10.3390/cancers11010013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/28/2022] Open
Abstract
Triple negative breast cancer (TNBC) cells are resistant to hormonal/targeted therapies. This study aims to investigate epigenetic differences between TNBC and other types of breast cancer and the effect of epigenetic modulation on the response of TNBC cells to hormonal therapy. Thus, we investigated (i) the expression of different epigenetic markers, (ii) the effect of epigenetic modifying agents on the expression of ERα and HER2/ERBB2 and (iii) the effect on the response to tamoxifen in four breast cancer cell lines with different hormonal receptor status. Our results revealed a differential expression patterns of epigenetic markers in the four breast cancer cells. In TNBC cells, histone deacetylases (HDAC) 1 and 2 were less expressed, whereas HDACs 4 and 6 were overexpressed. Interestingly, treatment with epigenetic modifiers resulted in (i) a pronounced increase in the expression of ERα and HER2/ERBB2 along with (ii) an increase in the sensitivity of TNBC cells to tamoxifen. Collectively, this study indicates a different epigenetic background for TNBC cells, which represses the expression of ERα and HER2/ERBB2. Furthermore, we provide here the rationale for the use of epigenetic modifiers to enhance the response of TNBC to hormonal therapy through upregulation of ERα.
Collapse
|