1
|
Kasprzyk ME, Sura W, Podralska M, Kazimierska M, Seitz A, Łosiewski W, Woźniak T, Guikema JEJ, Diepstra A, Kluiver J, Van den Berg A, Rozwadowska N, Dzikiewicz-Krawczyk A. Core regions in immunoglobulin heavy chain enhancers essential for survival of non-Hodgkin lymphoma cells are identified by a CRISPR interference screen. Haematologica 2024; 109:4007-4020. [PMID: 38934080 PMCID: PMC11609794 DOI: 10.3324/haematol.2023.284672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Chromosomal translocations in non-Hodgkin lymphoma (NHL) result in activation of oncogenes by placing them under the regulation of immunoglobulin heavy chain (IGH) super-enhancers. Aberrant expression of translocated oncogenes induced by enhancer activity can contribute to lymphomagenesis. The role of the IGH enhancers in normal B-cell development is well established, but knowledge regarding the precise mechanisms of their involvement in control of the translocated oncogenes is limited. The goal of this project was to define the critical regions in the IGH regulatory elements and identify enhancer RNA (eRNA). We designed a single guide RNA library densely covering the IGH enhancers and performed tiling CRISPR interference screens in three NHL cell lines. This revealed three regions crucial for NHL cell growth. With chromatin- enriched RNA sequencing we showed transcription from the core enhancer regions and subsequently validated expression of the eRNA in a panel of NHL cell lines and tissue samples. Inhibition of the essential IGH enhancer regions decreased expression of eRNA and translocated oncogenes in several NHL cell lines. The observed expression and growth patterns were consistent with the breakpoints in the IGH locus. Moreover, targeting the Eμ enhancer resulted in loss of B-cell receptor expression. In a Burkitt lymphoma cell line, MYC overexpression partially rescued the phenotype induced by IGH enhancer inhibition. Our results indicated the most critical regions in the IGH enhancers and provided new insights into the current understanding of the role of IGH enhancers in B-cell NHL. As such, this study forms a basis for development of potential therapeutic approaches.
Collapse
Affiliation(s)
| | - Weronika Sura
- Institute of Human Genetics, Polish Academy of Sciences, Poznań
| | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań
| | | | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen
| | | | - Tomasz Woźniak
- Institute of Human Genetics, Polish Academy of Sciences, Poznań
| | | | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen
| | - Anke Van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen
| | | | | |
Collapse
|
2
|
Balasubramanian V, Saravanan R, Balamurugan SSS, Rajendran S, Joseph LD, Dev B, Srinivasan B, Balunathan N, Shanmugasundaram G, Gopisetty G, Ganesan K, Rayala SK, Venkatraman G. Genetic alteration of mRNA editing enzyme APOBEC3B in the pathogenesis of ovarian endometriosis. Reprod Biomed Online 2024; 49:104111. [PMID: 39197402 DOI: 10.1016/j.rbmo.2024.104111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/24/2024] [Accepted: 05/09/2024] [Indexed: 09/01/2024]
Abstract
RESEARCH QUESTION What are the specific genetic alterations and associated network in endometriotic cells responsible for the disease pathogenesis? DESIGN Case control experimental study involving 45 women with endometriosis who underwent laparoscopic surgery (case) and 45 normal samples from women undergoing total abdominal hysterectomy (control). The endometrial samples were subjected to whole exome sequencing (WES) of endometriotic tissue and copy number variation analysis. Validation of gene hits were obtained from WES using polymerase chain reaction techniques, immunological techniques, in-silico tools and transgenic cell line models. RESULTS Germline heterozygous deletion of mRNA editing enzyme subunit APOBEC3B was identified in about 96% of endometriosis samples. The presence of germline deletion was confirmed with blood, endometrium and normal ovary samples obtained from the same patient. APOBEC3B deletions resulted in a hybrid protein that activates A1CF. APOBEC3B deletion can be a major cause of changes in the endometriotic microenvironment, and contributes to the pathogenesis and manifestation of the disease. The effect of APOBEC3B deletion was proved by in-vitro experiments in a cell line model, which displayed endometriosis-like characteristics. APOBEC3B germline deletion plays a major role in the pathogenesis of endometriosis, which is evident by the activation of A1CF, an increase in epithelial to mesenchymal transition, cellular proliferation, inflammation markers and a decrease in apoptosis markers. CONCLUSION The deleterious effects caused by APOBEC3B deletion in endometriosis were identified and confirmed. These results might provide a base for identifying the complete pathogenetic mechanism of endometriosis, thereby moving a step closer to better diagnosis and treatment options.
Collapse
Affiliation(s)
- Vaishnavi Balasubramanian
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Roshni Saravanan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Srikanth Swamy Swaroop Balamurugan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Swetha Rajendran
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Bhawna Dev
- Department of Radiology, Sri Ramachandra Medical College Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, India
| | - Bhuvana Srinivasan
- Department of Obstetrics and Gynecology, Sri Ramachandra Medical College Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600095, India
| | - Nandhini Balunathan
- Department of Human Genetics, Sri Ramachandra Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai-600116, India
| | | | - Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (W.I.A), Adayar, Chennai, 600036, India
| | - Kumaresan Ganesan
- Unit of Excellence in Cancer Genetics, Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India..
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences & Technology, Vellore Institute of Technology Vellore, Vellore, 632014, India..
| |
Collapse
|
3
|
Levine AJ, Carpten JD, Murphy M, Hainaut P. Exploring the genetic and molecular basis of differences in multiple myeloma of individuals of African and European descent. Cell Death Differ 2024; 31:1-8. [PMID: 38001255 PMCID: PMC10781774 DOI: 10.1038/s41418-023-01236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple Myeloma is a typical example of a neoplasm that shows significant differences in incidence, age of onset, type, and frequency of genetic alterations between patients of African and European ancestry. This perspective explores the hypothesis that both genetic polymorphisms and spontaneous somatic mutations in the TP53 tumor suppressor gene are determinants of these differences. In the US, the rates of occurrence of MM are at least twice as high in African Americans (AA) as in Caucasian Americans (CA). Strikingly, somatic TP53 mutations occur in large excess (at least 4-6-fold) in CA versus AA. On the other hand, TP53 contains polymorphisms specifying amino-acid differences that are under natural selection by the latitude of a population and have evolved during the migrations of humans over several hundred thousand years. The p53 protein plays important roles in DNA strand break repair and, therefore, in the surveillance of aberrant DNA recombination, leading to the B-cell translocations that are causal in the pathogenesis of MM. We posit that polymorphisms in one region of the TP53 gene (introns 2 and 3, and the proline-rich domain) specify a concentration of the p53 protein with a higher capacity to repress translocations in CA than AA patients. This, in turn, results in a higher risk of acquiring inactivating, somatic mutations in a different region of the TP53 gene (DNA binding domain) in CA than in AA patients. Such a mechanism, by which the polymorphic status of a gene influencing its own "spontaneous" mutation frequency, may provide a genetic basis to address ethnicity-related differences in the incidence and phenotypes of many different forms of cancer.
Collapse
Affiliation(s)
- Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA.
| | - John D Carpten
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | - Pierre Hainaut
- Institute for Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
4
|
Ferrad M, Ghazzaui N, Issaoui H, Drouineau E, Oblet C, Marchiol T, Cook-Moreau J, Denizot Y. Homozygous iMycCα transgenic mice as a model of plasma B-cell lymphomas. Leuk Lymphoma 2022; 63:2114-2125. [DOI: 10.1080/10428194.2022.2064989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Melissa Ferrad
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Nour Ghazzaui
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Hussein Issaoui
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Emilie Drouineau
- I2BC, IBITEC-S, CEA, CNRS, Université Paris‐Sud, Université Paris‐Saclay, Gif-sur-Yvette, France
| | - Christelle Oblet
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Tiffany Marchiol
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Jeanne Cook-Moreau
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| | - Yves Denizot
- UMR CNRS 7276, INSERM U1262, Equipe Labellisée LIGUE 2018, Université de Limoges, Limoges, France
| |
Collapse
|
5
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Kasprzyk ME, Łosiewski W, Podralska M, Kazimierska M, Sura W, Dzikiewicz-Krawczyk A. 7-[[(4-methyl-2-pyridinyl)amino](2-pyridinyl)methyl]-8-quinolinol (compound 30666) inhibits enhancer activity and reduces B-cell lymphoma growth - A question of specificity. Eur J Pharmacol 2021; 910:174505. [PMID: 34534532 DOI: 10.1016/j.ejphar.2021.174505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/18/2023]
Abstract
B-cell non-Hodgkin lymphoma (NHL) is among the ten most common malignancies. Survival rates range from very poor to over 90% and highly depend on the stage and subtype. Characteristic features of NHL are recurrent translocations juxtaposing an oncogene (e.g. MYC, BCL2) to the enhancers in the immunoglobulin heavy chain (IGH) locus. Survival and proliferation of many B-cell lymphomas depend on the expression of the translocated oncogene. Thus, targeting IGH enhancers as an anti-lymphoma treatment seems a promising strategy. Recently, a small molecule - 7-[[(4-methyl-2-pyridinyl)amino](2-pyridinyl)methyl]-8-quinolinol (compound 30666) was identified to decrease activity of the Eμ enhancer and reduce the expression of translocated oncogenes in multiple myeloma and some NHL cell lines (Dolloff, 2019). Here, we aimed to test the effect of compound 30666 in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) and shed light on its mechanism of action. We report that both IGH-translocation positive NHL cells as well as IGH-translocation negative B cells and non-B cell controls treated with compound 30666 exhibited consistent growth inhibition. A statistically significant increase in cell percentage in sub-G1 phase of cell cycle was observed, suggesting induction of apoptosis. Compound 30666 downregulated MYC levels in BL cell lines and altered IGH enhancer RNA expression. Moreover, a global decrease of H3K27ac and an increase of H3K4me1 was observed upon 30666 treatment, which suggests switching enhancers to a poised or primed state. Altogether, our findings indicate that 30666 inhibitor affects enhancer activity but might not be as specific for IGH enhancers as previously reported.
Collapse
Affiliation(s)
| | | | - Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Marta Kazimierska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Weronika Sura
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | | |
Collapse
|
7
|
Kasprzyk ME, Sura W, Dzikiewicz-Krawczyk A. Enhancing B-Cell Malignancies-On Repurposing Enhancer Activity towards Cancer. Cancers (Basel) 2021; 13:3270. [PMID: 34210001 PMCID: PMC8269369 DOI: 10.3390/cancers13133270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/19/2023] Open
Abstract
B-cell lymphomas and leukemias derive from B cells at various stages of maturation and are the 6th most common cancer-related cause of death. While the role of several oncogenes and tumor suppressors in the pathogenesis of B-cell neoplasms was established, recent research indicated the involvement of non-coding, regulatory sequences. Enhancers are DNA elements controlling gene expression in a cell type- and developmental stage-specific manner. They ensure proper differentiation and maturation of B cells, resulting in production of high affinity antibodies. However, the activity of enhancers can be redirected, setting B cells on the path towards cancer. In this review we discuss different mechanisms through which enhancers are exploited in malignant B cells, from the well-studied translocations juxtaposing oncogenes to immunoglobulin loci, through enhancer dysregulation by sequence variants and mutations, to enhancer hijacking by viruses. We also highlight the potential of therapeutic targeting of enhancers as a direction for future investigation.
Collapse
|