1
|
Evdokimova A, Kolesnikova T, Mazina MY, Krasnov A, Erokhin M, Chetverina D, Vorobyeva N. Transcriptional induction by ecdysone in Drosophila salivary glands involves an increase in chromatin accessibility and acetylation. Nucleic Acids Res 2025; 53:gkaf284. [PMID: 40239993 PMCID: PMC11997763 DOI: 10.1093/nar/gkaf284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Transcriptional activation by 20-hydroxyecdysone (20E) in Drosophila provides an excellent model for studying tissue-specific responses to steroids. An increase in the 20E concentration regulates the degradation of larval and the proliferation of adult tissues during metamorphosis. To study 20E-dependent transcription, we used the natural system for controlling the 20E concentration-the E23 membrane transporter-which exports 20E from the cell. We artificially expressed E23 in tissues to suppress the first wave of 20E-inducible transcription at metamorphosis. E23 expression revealed a plethora of 20E-dependent genes in salivary glands, while mildly affecting transcription in brain. We described the mechanisms controlling transcriptional activation by 20E in salivary glands. 20E depletion decreased the binding of Pol II and the TFIID subunit, TBP, to the promoters of primary targets, demonstrating the role of 20E in transcription initiation. At target loci, 20E depletion resulted in the malfunctioning of sites co-bound with EcR and CBP/Nejire and enriched for the H3K27Ac mark inherent to active enhancers. At these sites, the 20E concentration was found to control chromatin accessibility and acetylation. We suggest that the activity of these 'active' ecdysone-sensitive elements was responsible for the active status of 20E targets in the salivary glands of wandering larvae.
Collapse
Affiliation(s)
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | | |
Collapse
|
2
|
Scanlan JL, Robin C. Genetic characterization of candidate ecdysteroid kinases in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae204. [PMID: 39208453 DOI: 10.1093/g3journal/jkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Ecdysteroids are major hormones in insects and control molting, growth, reproduction, physiology, and behavior. The biosynthesis of ecdysteroids such as 20-hydroxyecdysone (20E) from dietary sterols is well characterized, but ecdysteroid catabolism is poorly understood. Ecdysteroid kinases (EcKs) mediate the reversible phosphorylation of ecdysteroids, which has been implicated in ecdysteroid recycling during embryogenesis and reproduction in various insects. However, to date, only 2 EcK-encoding genes have been identified, in the silkworm Bombyx mori and the mosquito Anopheles gambiae. Previously, we identified 2 ecdysteroid kinase-like (EcKL) genes-Wallflower (Wall) and Pinkman (pkm)-in the model fruit fly Drosophila melanogaster that are orthologs of the ecdysteroid 22-kinase gene BmEc22K. Here, using gene knockdown, knockout, and misexpression, we explore Wall and pkm's possible functions and genetically test the hypothesis that they encode EcKs. Wall and pkm null mutants are viable and fertile, suggesting that they are not essential for development or reproduction, whereas phenotypes arising from RNAi and somatic CRISPR appear to derive from off-target effects or other artifacts. However, misexpression of Wall results in dramatic phenotypes, including developmental arrest, and defects in trachea, cuticle, and pigmentation. Wall misexpression fails to phenocopy irreversible ecdysteroid catabolism through misexpression of Cyp18a1, suggesting that Wall does not directly inactivate 20E. Additionally, Wall misexpression phenotypes are not attenuated in Cyp18a1 mutants, strongly suggesting that Wall is not an ecdysteroid 26-kinase. We hypothesize that the substrate of Wall in this misexpression experiment and possibly generally is an unknown, atypical ecdysteroid that plays essential roles in Drosophila development, and may highlight aspects of insect endocrinology that are as-yet uncharacterized. We also provide preliminary evidence that CG5644 encodes an ecdysteroid 22-kinase conserved across Diptera.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| |
Collapse
|
3
|
Long GY, Gong MF, Yang H, Yang XB, Zhou C, Jin DC. Buprofezin affects the molting process by regulating nuclear receptors SfHR3 and SfHR4 in Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105695. [PMID: 38072550 DOI: 10.1016/j.pestbp.2023.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Nuclear receptors play a crucial role in various signaling and metabolic pathways, such as insect molting and development. Buprofezin (2-tert-butylimino-3-isopropyl-5-phenyl-perhydro-1, 3, 5-thiadiazin-4-one), a chitin synthesis inhibitor, causes molting deformities and slow death in insects by inhibiting chitin synthesis and interfering with their metabolism. This study investigated whether buprofezin affects insect ecdysteroid signaling pathway. The treatment of buprofezin significantly suppressed the transcription levels of SfHR3 and SfHR4, two nuclear receptor genes, in third-instar nymphs of Sogatella furcifera. Meanwhile, the transcription levels of SfHR3 and SfHR4 in first-day fifth-instar nymphs were induced at 12 h after 20E treatment. In addition, the silencing of SfHR3 and SfHR4 genes in first-day fifth-instar nymphs caused severe developmental delay and molting failure, resulting in a significant reduction of survival rates at 7.36% and 2.99% on the eighth day, respectively. Further analysis showed that the silencing SfHR3 and SfHR4 significantly inhibited the transcription levels of chitin synthesis and degradation-related genes. These results indicate that buprofezin can inhibits chitin synthesis and degradation by suppressing the signal transduction of 20E through SfHR3 and SfHR4, leading to molting failure and death. This study not only expands our understanding of the molecular mechanism of buprofezin in pest control but also lays a foundation for developing new control strategies of RNAi by targeting SfHR3 and SfHR4.
Collapse
Affiliation(s)
- Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang, China
| | - Ming-Fu Gong
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| | - Xi-Bin Yang
- Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang, China
| | - Cao Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| |
Collapse
|
4
|
Krasnov AN, Evdokimova AA, Mazina MY, Erokhin M, Chetverina D, Vorobyeva NE. Coregulators Reside within Drosophila Ecdysone-Inducible Loci before and after Ecdysone Treatment. Int J Mol Sci 2023; 24:11844. [PMID: 37511602 PMCID: PMC10380596 DOI: 10.3390/ijms241411844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | | | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
5
|
Nikolenko JV, Fursova NA, Mazina MY, Vorobyeva NE, Krasnov AN. The Drosophila CG9890 Protein is Involved in the Regulation of Ecdysone-Dependent Transcription. Mol Biol 2022. [DOI: 10.1134/s0026893322040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Mazina MY, Kovalenko EV, Vorobyeva NE. The negative elongation factor NELF promotes induced transcriptional response of Drosophila ecdysone-dependent genes. Sci Rep 2021; 11:172. [PMID: 33420323 PMCID: PMC7794308 DOI: 10.1038/s41598-020-80650-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
For many years it was believed that promoter-proximal RNA-polymerase II (Pol II) pausing manages the transcription of genes in Drosophila development by controlling spatiotemporal properties of their activation and repression. But the exact proteins that cooperate to stall Pol II in promoter-proximal regions of developmental genes are still largely unknown. The current work describes the molecular mechanism employed by the Negative ELongation Factor (NELF) to control the Pol II pause at genes whose transcription is induced by 20-hydroxyecdysone (20E). According to our data, the NELF complex is recruited to the promoters and enhancers of 20E-dependent genes. Its presence at the regulatory sites of 20E-dependent genes correlates with observed interaction between the NELF-A subunit and the ecdysone receptor (EcR). The complete NELF complex is formed at the 20E-dependent promoters and participates in both their induced transcriptional response and maintenance of the uninduced state to keep them ready for the forthcoming transcription. NELF depletion causes a significant decrease in transcription induced by 20E, which is associated with the disruption of Pol II elongation complexes. A considerable reduction in the promoter-bound level of the Spt5 subunit of transcription elongation factor DSIF was observed at the 20E-dependent genes upon NELF depletion. We presume that an important function of NELF is to participate in stabilizing the Pol II-DSIF complex, resulting in a significant impact on transcription of its target genes. In order to directly link NELF to regulation of 20E-dependent genes in development, we show the presence of NELF at the promoters of 20E-dependent genes during their active transcription in both embryogenesis and metamorphosis. We also demonstrate that 20E-dependent promoters, while temporarily inactive at the larval stage, preserve a Pol II paused state and bind NELF complex.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
7
|
Fursova NA, Mazina MY, Nikolenko JV, Vorobyova NE, Krasnov AN. Drosophila Zinc Finger Protein CG9890 Is Colocalized with Chromatin Modifying and Remodeling Complexes on Gene Promoters and Involved in Transcription Regulation. Acta Naturae 2020; 12:114-119. [PMID: 33456983 PMCID: PMC7800599 DOI: 10.32607/actanaturae.11056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we conducted a genome-wide study of the zinc finger protein
CG9890 and showed that it is localized mostly on the promoters of active genes.
The CG9890 binding sites are low-nucleosome-density regions and are colocalized
with the chromatin modifying and remodeling complexes SAGA and dSWI/SNF, as
well as with the ORC replication complex. The CG9890 protein was shown to be
involved in the regulation of the expression of some genes on the promoters of
which it is located, with the ecdysone cascade genes accounting for a
significant percentage of these genes. Thus, the CG9890 protein is a new member
of the transcriptional network which is localized on active promoters,
interacts with the main transcription and replication complexes, and is
involved in the regulation of both basal and inducible transcription.
Collapse
Affiliation(s)
- N. A. Fursova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. Y. Mazina
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - J. V. Nikolenko
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - N. E. Vorobyova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. N. Krasnov
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
8
|
Ecdysone-Induced 3D Chromatin Reorganization Involves Active Enhancers Bound by Pipsqueak and Polycomb. Cell Rep 2020; 28:2715-2727.e5. [PMID: 31484080 PMCID: PMC6754745 DOI: 10.1016/j.celrep.2019.07.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence suggests that Polycomb (Pc) is present at chromatin loop anchors in Drosophila. Pc is recruited to DNA through interactions with the GAGA binding factors GAF and Pipsqueak (Psq). Using HiChIP in Drosophila cells, we find that the psq gene, which has diverse roles in development and tumorigenesis, encodes distinct isoforms with unanticipated roles in genome 3D architecture. The BR-C, ttk, and bab domain (BTB)-containing Psq isoform (PsqL) colocalizes genome-wide with known architectural proteins. Conversely, Psq lacking the BTB domain (PsqS) is consistently found at Pc loop anchors and at active enhancers, including those that respond to the hormone ecdysone. After stimulation by this hormone, chromatin 3D organization is altered to connect promoters and ecdysone-responsive enhancers bound by PsqS. Our findings link Psq variants lacking the BTB domain to Pc-bound active enhancers, thus shedding light into their molecular function in chromatin changes underlying the response to hormone stimulus.
Collapse
|
9
|
Proximity-dependent biotin labelling reveals CP190 as an EcR/Usp molecular partner. Sci Rep 2020; 10:4793. [PMID: 32179799 PMCID: PMC7075897 DOI: 10.1038/s41598-020-61514-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/23/2022] Open
Abstract
Proximity-dependent biotin labelling revealed undescribed participants of the ecdysone response in Drosophila. Two labelling enzymes (BioID2 and APEX2) were fused to EcR or Usp to biotin label the surrounding proteins. The EcR/Usp heterodimer was found to collaborate with nuclear pore subunits, chromatin remodelers, and architectural proteins. Many proteins identified through proximity-dependent labelling with EcR/Usp were described previously as functional components of an ecdysone response, corroborating the potency of this labelling method. A link to ecdysone response was confirmed for some newly discovered regulators by immunoprecipitation of prepupal nuclear extract with anti-EcR antibodies and functional experiments in Drosophila S2 cells. A more in-depth study was conducted to clarify the association of EcR/Usp with one of the detected proteins, CP190, a well-described cofactor of Drosophila insulators. CP190 was found to co-immunoprecipitate with the EcR subunit of EcR/Usp in a 20E-independent manner. ChIP-Seq experiments revealed only partial overlapping between CP190 and EcR bound sites in the Drosophila genome and complete absence of CP190 binding at 20E-dependent enhancers. Analysis of Hi-C data demonstrated an existence of remote interactions between 20E-dependent enhancers and CP190 sites which suggests formation of a protein complex between EcR/Usp and CP190 through the space. Our results support the previous concept that CP190 has a role in stabilization of specific chromatin loops for proper activation of transcription of genes regulated by 20E hormone.
Collapse
|
10
|
Kovalenko EV, Mazina MY, Krasnov AN, Vorobyeva NE. The Drosophila nuclear receptors EcR and ERR jointly regulate the expression of genes involved in carbohydrate metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 112:103184. [PMID: 31295549 DOI: 10.1016/j.ibmb.2019.103184] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/14/2019] [Accepted: 07/06/2019] [Indexed: 06/09/2023]
Abstract
The rate of carbohydrate metabolism is tightly coordinated with developmental transitions in Drosophila, and fluctuates depending on the requirements of a particular developmental stage. These successive metabolic switches result from changes in the expression levels of genes encoding glycolytic, tricarboxylic acid cycle (TCA), and oxidative phosphorylation enzymes. In this report, we describe a repressive action of ecdysone signaling on the expression of glycolytic genes and enzymes of glycogen metabolism in Drosophila development. The basis of this effect is an interaction between the ecdysone receptor (EcR) and the estrogen-related receptor (ERR), a specific regulator of the Drosophila glycolysis. We found an overlapping DNA-binding pattern for the EcR and ERR in the Drosophila S2 cells. EcR was detected at a subset of the ERR target genes responsible for carbohydrate metabolism. The 20-hydroxyecdysone treatment of both the Drosophila larvae and the S2 cells decreased transcriptional levels of ERR targets. We propose a joint action mode for both the EcR and ERR, for at least a subset of the glycolytic genes. We find that both receptors bind to the same regulatory regions and may form or be part of a joint transcriptional regulatory complex in the Drosophila S2 cells.
Collapse
Affiliation(s)
- Elena V Kovalenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | | |
Collapse
|
11
|
Nikolenko JV, Krasnov AN, Vorobyeva NE. The SWI/SNF Chromatin Remodeling Complex Is Involved in Spatial Organization of the ftz-f1 Gene Locus. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mazina MY, Vorobyeva NE. Mechanisms of transcriptional regulation of ecdysone response. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanisms of ecdysone-dependent expression have been studied for many decades. Initially, the activation of individual genes under the influence of ecdysone was studied on the model of polythene chromosomes from salivary glands of Drosophila melanogaster. These works helped to investigate the many aspects of the Drosophila development. They also revealed plenty of valuable information regarding the fundamental mechanisms controlling the genes’ work. Many years ago, a model describing the process of gene activation by ecdysone, named after the author – Ashburner model – was proposed. This model is still considered an excellent description of the ecdysone cascade, which is implemented in the salivary glands during the formation of the Drosophila pupa. However, these days there is an opinion that the response of cells to the hormone ecdysone can develop with significant differences, depending on the type of cells. The same genes can be activated or repressed under the influence of ecdysone in different tissues. Likely, certain DNA-binding transcription factors that are involved in the ecdysonedependent response together with the EcR/Usp heterodimer are responsible for cell-type specificity. A number of transcriptional regulators involved in the ecdysone response have been described. Among them are several complexes responsible for chromatin remodeling and modification. It has been shown by various methods that ecdysone-dependent activation/repression of gene transcription develops with significant structural changes of chromatin on regulatory elements. The description of the molecular mechanism of this process, in particular, the role of individual proteins in it, as well as structural interactions between various regulatory elements is a matter of the future. This review is aimed to discuss the available information regarding the main regulators that interact with the ecdysone receptor. We provide a brief description of the regulator’s participation in the ecdysone response and links to the corresponding study. We also discuss general aspects of the mechanism of ecdysone-dependent regulation and highlight the most promising points for further research.
Collapse
Affiliation(s)
- M. Yu. Mazina
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| | - N. E. Vorobyeva
- Institute of Gene Biology, RAS, Group of transcriptional complexes dynamics
| |
Collapse
|
13
|
Kachaev ZM, Lebedeva LA, Kozlov EN, Toropygin IY, Schedl P, Shidlovskii YV. Paip2 is localized to active promoters and loaded onto nascent mRNA in Drosophila. Cell Cycle 2018; 17:1708-1720. [PMID: 29995569 DOI: 10.1080/15384101.2018.1496738] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Paip2 (Poly(A)-binding protein - interacting protein 2) is a conserved metazoan-specific protein that has been implicated in regulating the translation and stability of mRNAs. However, we have found that Paip2 is not restricted to the cytoplasm but is also found in the nucleus in Drosophila embryos, salivary glands, testes, and tissue culture cells. Nuclear Paip2 is associated with chromatin, and in chromatin immunoprecipitation experiments it maps to the promoter regions of active genes. However, this chromatin association is indirect, as it is RNA-dependent. Thus, Paip2 is one more item in the growing list of translation factors that are recruited to mRNAs co-transcriptionally.
Collapse
Affiliation(s)
- Zaur M Kachaev
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Lyubov A Lebedeva
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Eugene N Kozlov
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia
| | - Ilya Y Toropygin
- d Center of Common Use "Human Proteome" , V.I. Orekhovich Research Institute of Biomedical Chemistry , Moscow , Russia
| | - Paul Schedl
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,b Department of Molecular Biology , Princeton University , Princeton , NJ , USA
| | - Yulii V Shidlovskii
- a Laboratory of Gene Expression Regulation in Development , Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,c Department of Biology and General Genetics , I.M. Sechenov First Moscow State Medical University , Moscow , Russia
| |
Collapse
|
14
|
Xu QY, Meng QW, Deng P, Guo WC, Li GQ. Leptinotarsa hormone receptor 4 (HR4) tunes ecdysteroidogenesis and mediates 20-hydroxyecdysone signaling during larval-pupal metamorphosis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 94:50-60. [PMID: 28951206 DOI: 10.1016/j.ibmb.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
Hormone receptor 4 (HR4) is involved in the regulation of 20-hydroxyecdysone (20E) biosynthesis and the mediation of 20E signaling during larval-pupal transition in a holometabolan Drosophila melanogaster, whereas it acts as a repressor in 20E-responsive transcriptional cascade in a hemimetabolan, Blattella germanica. Here we characterized two HR4 splicing variants, LdHR4X1 and LdHR4X2, in a coleopteran Leptinotarsa decemlineata. LdHR4X1 was highly expressed in the prothoracic gland and epidermis while LdHR4X2 was abundantly transcribed in the nervous system. In vivo results showed that both prothoracicotropic hormone and 20E pathways transcriptionally regulated LdHR4, in an isoform-dependent pattern. RNA interference of LdHR4 at the final (fourth) larval instar, in contrast to the second- and third-instar periods, enhanced the expression of two ecdysteroidogenesis genes, increased 20E titer, upregulated transcription of five 20E-response genes, and reduced the mRNA level of Fushi tarazu-factor 1 (FTZ-F1). As a result, the fourth-instar LdHR4 RNAi larvae exhibited accelerated development and reduced body weight. Moreover, knockdown of LdHR4 at the fourth instar resulted in larval lethality and impaired pupation. Feeding of pyriproxyfen (a mimic of juvenile hormone) or silencing of a juvenile hormone degrading enzyme gene restored the normal course of ecdysteroidogenesis, duration of larval development, and body weight in fourth-instar LdHR4 RNAi larvae. The treatment partially suppressed the larval mortality but not the failure to pupate. The dual role of HR4 during larval-pupal metamorphosis appears to be evolutionarily conserved among holometabolans.
Collapse
Affiliation(s)
- Qing-Yu Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qing-Wei Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pan Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wen-Chao Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Mazina MY, Kovalenko EV, Derevyanko PK, Nikolenko JV, Krasnov AN, Vorobyeva NE. One signal stimulates different transcriptional activation mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:178-189. [PMID: 29410380 DOI: 10.1016/j.bbagrm.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/10/2017] [Accepted: 01/15/2018] [Indexed: 12/30/2022]
Abstract
Transcriptional activation is often represented as a "one-step process" that involves the simultaneous recruitment of co-activator proteins, leading to a change in gene status. Using Drosophila developmental ecdysone-dependent genes as a model, we demonstrated that activation of transcription is instead a continuous process that consists of a number of steps at which different phases of transcription (initiation or elongation) are stimulated. Thorough evaluation of the behaviour of multiple transcriptional complexes during the early activation process has shown that the pathways by which activation proceeds for different genes may vary considerably, even in response to the same induction signal. RNA polymerase II recruitment is an important step that is involved in one of the pathways. RNA polymerase II recruitment is accompanied by the recruitment of a significant number of transcriptional coactivators as well as slight changes in the chromatin structure. The second pathway involves the stimulation of transcriptional elongation as its key step. The level of coactivator binding to the promoter shows almost no increase, whereas chromatin modification levels change significantly.
Collapse
Affiliation(s)
- Marina Yu Mazina
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena V Kovalenko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Polina K Derevyanko
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia V Nikolenko
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Aleksey N Krasnov
- Group of Studying an Association of Transcription and mRNA Transport, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Transcriptional Complexes Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
16
|
Mazina MY, Kocheryzhkina EV, Nikolenko JV, Krasnov AN, Georgieva SG, Vorobyeva NE. Nuclear receptors EcR, Usp, E75, DHR3, and ERR regulate transcription of ecdysone cascade genes. DOKL BIOCHEM BIOPHYS 2017; 473:145-147. [PMID: 28510140 DOI: 10.1134/s1607672917020144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 11/23/2022]
Abstract
We found that an increase in the expression level of E75, DHR3, and ERR increases the degree of activation of dhr3 and hr4 genes in Drosophila S2 cells. We also detected a repressing effect of these nuclear receptors on the basal transcription level of these genes. This is the first study to show the ability of nuclear receptors E75, DHR3, and ERR to function as activators or repressors depending on external conditions. We also confirmed the existence of the interaction of all studied nuclear receptors with the promoters of dhr3 and hr4 genes of the ecdysone cascade in vivo.
Collapse
Affiliation(s)
- M Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | - E V Kocheryzhkina
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | - J V Nikolenko
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | - A N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| | - S G Georgieva
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 119991, Russia
| | - N E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia.
| |
Collapse
|
17
|
Mazina MY, Derevyanko PK, Kocheryzhkina EV, Nikolenko YV, Krasnov AN, Vorobyeva NE. Coactivator complexes participate in different stages of the Drosophila melanogaster hsp70 gene transcription. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|