1
|
Marešová A, Grulyová M, Hradilová M, Zemlianski V, Princová J, Převorovský M. Cbf11 and Mga2 function together to activate transcription of lipid metabolism genes and promote mitotic fidelity in fission yeast. PLoS Genet 2024; 20:e1011509. [PMID: 39652606 DOI: 10.1371/journal.pgen.1011509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Within a eukaryotic cell, both lipid homeostasis and faithful cell cycle progression are meticulously orchestrated. The fission yeast Schizosaccharomyces pombe provides a powerful platform to study the intricate regulatory mechanisms governing these fundamental processes. In S. pombe, the Cbf11 and Mga2 proteins are transcriptional activators of non-sterol lipid metabolism genes, with Cbf11 also known as a cell cycle regulator. Despite sharing a common set of target genes, little was known about their functional relationship. This study reveals that Cbf11 and Mga2 function together in the same regulatory pathway, critical for both lipid metabolism and mitotic fidelity. Deletion of either gene results in a similar array of defects, including slow growth, dysregulated lipid homeostasis, impaired cell cycle progression (cut phenotype), abnormal cell morphology, perturbed transcriptomic and proteomic profiles, and compromised response to the stressors camptothecin and thiabendazole. Remarkably, the double deletion mutant does not exhibit a more severe phenotype compared to the single mutants. In addition, ChIP-nexus analysis reveals that both Cbf11 and Mga2 bind to nearly identical positions within the promoter regions of target genes. Interestingly, Mga2 binding appears to be dependent on the presence of Cbf11 and Cbf11 likely acts as a tether to DNA, while Mga2 is needed to activate the target genes. In addition, the study explores the distribution of Cbf11 and Mga2 homologs across fungi. The presence of both Cbf11 and Mga2 homologs in Basidiomycota contrasts with Ascomycota, which mostly lack Cbf11 but retain Mga2. This suggests an evolutionary rewiring of the regulatory circuitry governing lipid metabolism and mitotic fidelity. In conclusion, this study offers compelling support for Cbf11 and Mga2 functioning jointly to regulate lipid metabolism and mitotic fidelity in fission yeast.
Collapse
Affiliation(s)
- Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michaela Grulyová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
2
|
Zemlianski V, Marešová A, Princová J, Holič R, Häsler R, Ramos Del Río MJ, Lhoste L, Zarechyntsava M, Převorovský M. Nitrogen availability is important for preventing catastrophic mitosis in fission yeast. J Cell Sci 2024; 137:jcs262196. [PMID: 38780300 DOI: 10.1242/jcs.262196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.
Collapse
Affiliation(s)
- Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Roman Holič
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Manuel José Ramos Del Río
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Laurane Lhoste
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Maryia Zarechyntsava
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
3
|
Marešová A, Oravcová M, Rodríguez-López M, Hradilová M, Zemlianski V, Häsler R, Hernández P, Bähler J, Převorovský M. Critical importance of DNA binding for CSL protein functions in fission yeast. J Cell Sci 2024; 137:jcs261568. [PMID: 38482739 DOI: 10.1242/jcs.261568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/07/2024] [Indexed: 05/01/2024] Open
Abstract
CSL proteins [named after the homologs CBF1 (RBP-Jκ in mice), Suppressor of Hairless and LAG-1] are conserved transcription factors found in animals and fungi. In the fission yeast Schizosaccharomyces pombe, they regulate various cellular processes, including cell cycle progression, lipid metabolism and cell adhesion. CSL proteins bind to DNA through their N-terminal Rel-like domain and central β-trefoil domain. Here, we investigated the importance of DNA binding for CSL protein functions in fission yeast. We created CSL protein mutants with disrupted DNA binding and found that the vast majority of CSL protein functions depend on intact DNA binding. Specifically, DNA binding is crucial for the regulation of cell adhesion, lipid metabolism, cell cycle progression, long non-coding RNA expression and genome integrity maintenance. Interestingly, perturbed lipid metabolism leads to chromatin structure changes, potentially linking lipid metabolism to the diverse phenotypes associated with CSL protein functions. Our study highlights the critical role of DNA binding for CSL protein functions in fission yeast.
Collapse
Affiliation(s)
- Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martina Oravcová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - María Rodríguez-López
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miluše Hradilová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment , University College London, Gower Street, London WC1E 6BT, UK
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
4
|
Princová J, Salat-Canela C, Daněk P, Marešová A, de Cubas L, Bähler J, Ayté J, Hidalgo E, Převorovský M. Perturbed fatty-acid metabolism is linked to localized chromatin hyperacetylation, increased stress-response gene expression and resistance to oxidative stress. PLoS Genet 2023; 19:e1010582. [PMID: 36626368 PMCID: PMC9870116 DOI: 10.1371/journal.pgen.1010582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/23/2023] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Oxidative stress is associated with cardiovascular and neurodegenerative diseases, diabetes, cancer, psychiatric disorders and aging. In order to counteract, eliminate and/or adapt to the sources of stress, cells possess elaborate stress-response mechanisms, which also operate at the level of regulating transcription. Interestingly, it is becoming apparent that the metabolic state of the cell and certain metabolites can directly control the epigenetic information and gene expression. In the fission yeast Schizosaccharomyces pombe, the conserved Sty1 stress-activated protein kinase cascade is the main pathway responding to most types of stresses, and regulates the transcription of hundreds of genes via the Atf1 transcription factor. Here we report that fission yeast cells defective in fatty acid synthesis (cbf11, mga2 and ACC/cut6 mutants; FAS inhibition) show increased expression of a subset of stress-response genes. This altered gene expression depends on Sty1-Atf1, the Pap1 transcription factor, and the Gcn5 and Mst1 histone acetyltransferases, is associated with increased acetylation of histone H3 at lysine 9 in the corresponding gene promoters, and results in increased cellular resistance to oxidative stress. We propose that changes in lipid metabolism can regulate the chromatin and transcription of specific stress-response genes, which in turn might help cells to maintain redox homeostasis.
Collapse
Affiliation(s)
- Jarmila Princová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Petr Daněk
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anna Marešová
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Laura de Cubas
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London, United Kingdom
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader, Barcelona, Spain
| | - Martin Převorovský
- Laboratory of Microbial Genomics, Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
5
|
Yu T, Li D, Zeng Z, Xu X, Zhang H, Wu J, Song W, Zhu H. INSC Is Down-Regulated in Colon Cancer and Correlated to Immune Infiltration. Front Genet 2022; 13:821826. [PMID: 35664320 PMCID: PMC9161087 DOI: 10.3389/fgene.2022.821826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Previous studies have verified that Inscuteable Spindle Orientation Adaptor Protein (INSC) can regulate cell proliferation and differentiation in the developing nervous system. It also plays an important role in spindle orientation during mitosis and asymmetric division of fibroblasts and participates in the process of stratification of the squamous epithelium. The role and potential mechanism of INSC in the development of colonic adenocarcinoma (COAD) have not been fully understood. This study aimed at exploring the prognostic value of INSC in COAD and the correlation of its expression with immune infiltration.Methods: The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) project, Gene Expression Profiling Interactive Analysis (GEPIA), and Gene Expression Omnibus (GEO) database were used to analyze the expression of INSC in COAD. The INSC protein expression level was analyzed by immunohistochemistry staining and the Human Protein Atlas (HPA) database. The diagnostic and prognostic values of INSC in COAD patients were analyzed using receiver operating characteristic (ROC) and Kaplan–Meier (KM) survival curves. In order to understand whether INSC is an independent prognostic factor, we used univariable and multivariate Cox analyses to analyze INSC expression and several clinical characteristics with survival. We use STRING analysis to find INSC-related proteins and related biological events analyzed by Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. At last, GEPIA and the Tumor Immune Estimation Resource (TIMER) were employed to explore the relationship between INSC and immune infiltrates and its marker gene set.Results: INSC was lower expressed in COAD tissues than in normal colon tissues, which was correlated with tumor stage. Patients with lower expression of INSC had shorter overall survival (OS). Moreover, univariable Cox analysis demonstrated that high expression of INSC was an independent prognostic factor for COAD. ROC analysis showed INSC was an accurate marker for identifying tumors from normal colon tissue, and the AUC of the curve was 0.923. Significant GO term analysis by GSEA showed that genes correlated with INSC were found to be enriched in several immune-related pathways. Specifically, INSC expression showed significant negative correlations with infiltration levels of B cells, CD4+ T cells, macrophages, DCs, and their marker sets in COAD.Conclusion: INSC was provided with prognostic value in COAD and related to immune invasion.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, Integrated Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Yu, ; Hua Zhu,
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Xu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Tao Yu, ; Hua Zhu,
| |
Collapse
|
6
|
Zach R, Carr AM. Increased expression of Polδ does not alter the canonical replication program in vivo. Wellcome Open Res 2021; 6:44. [PMID: 33796794 PMCID: PMC7974630 DOI: 10.12688/wellcomeopenres.16600.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background: In vitro experiments utilising the reconstituted Saccharomyces cerevisiae eukaryotic replisome indicated that the efficiency of the leading strand replication is impaired by a moderate increase in Polδ concentration. It was hypothesised that the slower rate of the leading strand synthesis characteristic for reactions containing two-fold and four-fold increased concentration of Polδ represented a consequence of a relatively rare event, during which Polδ stochastically outcompeted Polε and, in an inefficient manner, temporarily facilitated extension of the leading strand. Inspired by this observation, we aimed to determine whether similarly increased Polδ levels influence replication dynamics in vivo using the fission yeast Schizosaccharomyces pombe as a model system. Methods: To generate S. pombe strains over-expressing Polδ, we utilised Cre-Lox mediated cassette exchange and integrated one or three extra genomic copies of all four Polδ genes. To estimate expression of respective Polδ genes in Polδ-overexpressing mutants, we measured relative transcript levels of cdc1 + , cdc6 + (or cdc6 L591G ), cdc27 + and cdm1 + by reverse transcription followed by quantitative PCR (RT-qPCR). To assess the impact of Polδ over-expression on cell physiology and replication dynamics, we used standard cell biology techniques and polymerase usage sequencing. Results: We provide an evidence that two-fold and four-fold over-production of Polδ does not significantly alter growth rate, cellular morphology and S-phase duration. Polymerase usage sequencing analysis further indicates that increased Polδ expression does not change activities of Polδ, Polε and Polα at replication initiation sites and across replication termination zones. Additionally, we show that mutants over-expressing Polδ preserve WT-like distribution of replication origin efficiencies. Conclusions: Our experiments do not disprove the existence of opportunistic polymerase switches; however, the data indicate that, if stochastic replacement of Polε for Polδ does occur i n vivo, it represents a rare phenomenon that does not significantly influence canonical replication program.
Collapse
Affiliation(s)
- Róbert Zach
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| |
Collapse
|
7
|
Zach R, Carr AM. Increased expression of Polδ does not alter the canonical replication program in vivo. Wellcome Open Res 2021; 6:44. [PMID: 33796794 PMCID: PMC7974630 DOI: 10.12688/wellcomeopenres.16600.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background: In vitro experiments utilising the reconstituted Saccharomyces cerevisiae eukaryotic replisome indicated that the efficiency of the leading strand replication is impaired by a moderate increase in Polδ concentration. It was hypothesised that the slower rate of the leading strand synthesis characteristic for reactions containing two-fold and four-fold increased concentration of Polδ represented a consequence of a relatively rare event, during which Polδ stochastically outcompeted Polε and, in an inefficient manner, temporarily facilitated extension of the leading strand. Inspired by this observation, we aimed to determine whether similarly increased Polδ levels influence replication dynamics in vivo using the fission yeast Schizosaccharomyces pombe as a model system. Methods: To generate S. pombe strains over-expressing Polδ, we utilised Cre-Lox mediated cassette exchange and integrated one or three extra genomic copies of all four Polδ genes. To estimate expression of respective Polδ genes in Polδ-overexpressing mutants, we measured relative transcript levels of cdc1 + , cdc6 + (or cdc6 L591G ), cdc27 + and cdm1 + by reverse transcription followed by quantitative PCR (RT-qPCR). To assess the impact of Polδ over-expression on cell physiology and replication dynamics, we used standard cell biology techniques and polymerase usage sequencing. Results: We provide an evidence that two-fold and four-fold over-production of Polδ does not significantly alter growth rate, cellular morphology and S-phase duration. Polymerase usage sequencing analysis further indicates that increased Polδ expression does not change activities of Polδ, Polε and Polα at replication initiation sites and across replication termination zones. Additionally, we show that mutants over-expressing Polδ preserve WT-like distribution of replication origin efficiencies. Conclusions: Our experiments do not disprove the existence of opportunistic polymerase switches; however, the data indicate that, if stochastic replacement of Polε for Polδ does occur i n vivo, it represents a rare phenomenon that does not significantly influence canonical replication program.
Collapse
Affiliation(s)
- Róbert Zach
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Antony M. Carr
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| |
Collapse
|
8
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
9
|
Holič R, Pokorná L, Griač P. Metabolism of phospholipids in the yeast
Schizosaccharomyces pombe. Yeast 2019; 37:73-92. [DOI: 10.1002/yea.3451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Roman Holič
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| | - Peter Griač
- Centre of Biosciences, Slovak Academy of Sciences Institute of Animal Biochemistry and Genetics Dúbravská cesta 9 Bratislava Slovakia
| |
Collapse
|
10
|
Zach R, Převorovský M. The phenomenon of lipid metabolism "cut" mutants. Yeast 2018; 35:631-637. [PMID: 30278108 DOI: 10.1002/yea.3358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 02/05/2023] Open
Abstract
Every cell cycle iteration culminates with the resolution of a mitotic nucleus into a pair of daughter nuclei, which are distributed between the two daughter cells. In the fission yeast Schizosaccharomyces pombe, the faithful division of a mitotic nucleus depends on unperturbed lipogenesis. Upon genetically or chemically induced perturbation of lipid anabolism, S. pombe cells fail to separate the two daughter nuclei and subsequently initiate lethal cytokinesis resulting in the so-called "cut" terminal phenotype. Evidence supporting a critical role of lipid biogenesis in successful mitosis in S. pombe has been accumulating for almost two decades, but the exact mechanism explaining the reported observations had been elusive. Recently, several studies established a functional link between biosynthesis of structural phospholipids, nuclear membrane growth, and the fidelity of "closed" mitosis in S. pombe. These novel insights suggest a mechanistic explanation for the mitotic defects characteristic for some S. pombe mutants deficient in lipid anabolism and extend our knowledge of metabolic modulation within the context of the cell cycle. In this review, we cover the essential role of lipogenesis in "closed" mitosis, focusing mainly on S. pombe as a model system.
Collapse
Affiliation(s)
- Róbert Zach
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic.,Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Zach R, Tvarůžková J, Schätz M, Ťupa O, Grallert B, Převorovský M. Mitotic defects in fission yeast lipid metabolism 'cut' mutants are suppressed by ammonium chloride. FEMS Yeast Res 2018; 18:5040229. [PMID: 29931271 PMCID: PMC6037054 DOI: 10.1093/femsyr/foy064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Fission yeast 'cut' mutants show defects in temporal coordination of nuclear division with cytokinesis, resulting in aberrant mitosis and lethality. Among other causes, the 'cut' phenotype can be triggered by genetic or chemical perturbation of lipid metabolism, supposedly resulting in shortage of membrane phospholipids and insufficient nuclear envelope expansion during anaphase. Interestingly, penetrance of the 'cut' phenotype in mutants of the transcription factor cbf11 and acetyl-coenzyme A carboxylase cut6, both related to lipid metabolism, is highly dependent on growth media, although the specific nutrient(s) affecting 'cut' occurrence is not known. In this study, we set out to identify the growth media component(s) responsible for 'cut' phenotype suppression in Δcbf11 and cut6-621 cells. We show that mitotic defects occur rapidly in Δcbf11 cells upon shift from the minimal EMM medium ('cut' suppressing) to the complex YES medium ('cut' promoting). By growing cells in YES medium supplemented with individual EMM components, we identified ammonium chloride, an efficiently utilized nitrogen source, as a specific and potent suppressor of the 'cut' phenotype in both Δcbf11 and cut6-621. Furthermore, we found that ammonium chloride boosts lipid droplet formation in wild-type cells. Our findings suggest a possible involvement of nutrient-responsive signaling in 'cut' suppression.
Collapse
Affiliation(s)
- Róbert Zach
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jarmila Tvarůžková
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Schätz
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Ondřej Ťupa
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|