1
|
Turvey GL, López de Alba E, Stewart E, Cook H, Alalti A, Gawne RT, Ainscough JFX, Mason AS, Coverley D. Epigenetic deprogramming by disruption of CIZ1-RNA nuclear assemblies in early-stage breast cancers. J Cell Biol 2025; 224:e202409123. [PMID: 40067149 PMCID: PMC11895699 DOI: 10.1083/jcb.202409123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/11/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
CIZ1 is part of the RNA-dependent supramolecular assemblies that form around the inactive X-chromosome (Xi) in female cells and smaller assemblies throughout the nucleus in both sexes. Here, we show that CIZ1 C-terminal anchor domain (AD) is elevated in human breast tumor transcriptomes, even at stage I. Elevation correlates with deprotection of chromatin and upregulation of lncRNA-containing gene clusters in ∼10 Mb regions enriched in cancer-associated genes. We modeled the effect of AD on endogenous CIZ1-Xi assemblies and observed dominant-negative interference with their reformation after mitosis, leading to abnormal assemblies similar to those in breast cancer cells, and depletion of H2AK119ub1, H3K27me3, and Xist. Consistent alterations in gene expression were evident across the genome, showing that AD-mediated interference has a destabilizing effect, likely by unscheduled exposure of underlying chromatin to modifying enzymes. The data argue for a dominant, potent, and rapid effect of CIZ1 AD that can deprogram gene expression patterns and which may predispose incipient tumors to epigenetic instability.
Collapse
Affiliation(s)
- Gabrielle L. Turvey
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Ernesto López de Alba
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
| | - Emma Stewart
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Heather Cook
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
| | - Ahmad Alalti
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
| | - Richard T. Gawne
- York Biomedical Research Institute, University of York, York, UK
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - Justin F.-X. Ainscough
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Andrew S. Mason
- York Biomedical Research Institute, University of York, York, UK
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - Dawn Coverley
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
2
|
Dobbs OG, Wilson RHC, Newling K, Ainscough JFX, Coverley D. Epigenetic instability caused by absence of CIZ1 drives transformation during quiescence cycles. BMC Biol 2023; 21:175. [PMID: 37580709 PMCID: PMC10426085 DOI: 10.1186/s12915-023-01671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Cip1-interacting zinc finger protein 1 (CIZ1) forms RNA-dependent protein assemblies that stabilise epigenetic state, notable at the inactive X chromosome in females. CIZ1 has been linked with a range of human cancers and in mice genetic deletion of CIZ1 manifests as hyperproliferative lymphoid lineages in females. This suggests that its role in maintenance of epigenetic stability is linked with disease. RESULTS Here, we show that male and female CIZ1-null primary murine fibroblasts have reduced H4K20me1 and that this compromises nuclear condensation on entry to quiescence. Global transcriptional repression remains intact in condensation-deficient CIZ1-null cells; however, a subset of genes linked with chromatin condensation and homology-directed DNA repair are perturbed. Failure to condense is phenotypically mimicked by manipulation of the H4K20me1 methyltransferase, SET8, in WT cells and partially reverted in CIZ1-null cells upon re-expression of CIZ1. Crucially, during exit from quiescence, nuclear decondensation remains active, so that repeated entry and exit cycles give rise to expanded nuclei susceptible to mechanical stress, DNA damage checkpoint activation, and downstream emergence of transformed proliferative colonies. CONCLUSIONS Our results demonstrate a role for CIZ1 in chromatin condensation on entry to quiescence and explore the consequences of this defect in CIZ1-null cells. Together, the data show that CIZ1's protection of the epigenome guards against genome instability during quiescence cycles. This identifies loss of CIZ1 as a potentially devastating vulnerability in cells that undergo cycles of quiescence entry and exit.
Collapse
Affiliation(s)
- Olivia G Dobbs
- Department of Biology, University of York, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, York, UK.
| | - Rosemary H C Wilson
- Department of Biology, University of York, York, YO10 5DD, UK
- Exact Sciences Innovation, The Sherard Building, Oxford Science Park, Edmund Halley Rd, Oxford, OX4 4DQ, UK
| | - Katherine Newling
- Department of Biology, University of York, York, YO10 5DD, UK
- Genomics and Bioinformatics Laboratory, Bioscience Technology Facility, University of York, York, YO10 5DD, UK
| | | | - Dawn Coverley
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
3
|
Valledor M, Byron M, Dumas B, Carone DM, Hall LL, Lawrence JB. Early chromosome condensation by XIST builds A-repeat RNA density that facilitates gene silencing. Cell Rep 2023; 42:112686. [PMID: 37384527 PMCID: PMC10461597 DOI: 10.1016/j.celrep.2023.112686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 10/31/2022] [Accepted: 06/08/2023] [Indexed: 07/01/2023] Open
Abstract
XIST RNA triggers chromosome-wide gene silencing and condenses an active chromosome into a Barr body. Here, we use inducible human XIST to examine early steps in the process, showing that XIST modifies cytoarchitecture before widespread gene silencing. In just 2-4 h, barely visible transcripts populate the large "sparse zone" surrounding the smaller "dense zone"; importantly, density zones exhibit different chromatin impacts. Sparse transcripts immediately trigger immunofluorescence for H2AK119ub and CIZ1, a matrix protein. H3K27me3 appears hours later in the dense zone, which enlarges with chromosome condensation. Genes examined are silenced after compaction of the RNA/DNA territory. Insights into this come from the findings that the A-repeat alone can silence genes and rapidly, but only where dense RNA supports sustained histone deacetylation. We propose that sparse XIST RNA quickly impacts architectural elements to condense the largely non-coding chromosome, coalescing RNA density that facilitates an unstable, A-repeat-dependent step required for gene silencing.
Collapse
Affiliation(s)
- Melvys Valledor
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brett Dumas
- Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Lisa L Hall
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
4
|
Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1. Sci Rep 2020; 10:18103. [PMID: 33093612 PMCID: PMC7582970 DOI: 10.1038/s41598-020-75160-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022] Open
Abstract
CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action.
Collapse
|
5
|
Li Y, Zhou X, Liu J, Gao N, Yang R, Wang Q, Ji J, Ma L, He Q. Dihydroartemisinin inhibits the tumorigenesis and metastasis of breast cancer via downregulating CIZ1 expression associated with TGF-β1 signaling. Life Sci 2020; 248:117454. [PMID: 32088211 DOI: 10.1016/j.lfs.2020.117454] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/25/2022]
Abstract
AIMS Dihydroartemisinin (DHA) is currently considered as the promising cancer therapeutic drug. In this study, we aimed to investigate the anti-proliferative and anti-metastasis effects of DHA. MAIN METHODS Utilizing breast cancer cells MCF-7, MDA-MB-231 and BT549, cell proliferation, migration and invasion were detected. RT-qPCR was performed to detect CIZ1, TGF-β1 and Snail expression, and the interactions of these related molecules were analyzed by GeneMANIA database. Western blot detected CIZ1, TGF-β1/Smads signaling and Snail expression in DHA-treated cells, in TGFβ1-induced cells with enhanced metastatic capacity, and in cells treated with DHA plus TGFβ1/TGFβ1 inhibitor SD-208. KEY FINDINGS Results indicated DHA inhibited breast cancer cell proliferation and migration, with more potent effects compared with that of artemisinin. RT-qPCR and Western blot showed DHA inhibited CIZ1, TGF-β1 and Snail expression, and these molecules were shown to have protein-protein interactions by bioinformatics. Furthermore, TGFβ1-treatment enhanced MCF-7 migration and invasion, and CIZ1, TGF-β1/Smads signaling and snail activities; DHA, SD-208, combination of DHA and SD-208 reversed these conditions, preliminarily proving the cascade regulation between TGF-β1 signaling and CIZ1. MCF-7 xenografts model demonstrated the inhibition of DHA on tumor burden, and its mechanisms and well-tolerance in vivo; combination of DHA and SD-208 tried by us for the first time showed better treatment effects, but possible liver impairment made its use still keep cautious. SIGNIFICANCE DHA treatment inhibits the proliferation and metastasis of breast cancer, through suppressing TGF-β1/Smad signaling and CIZ1, suggesting the promising potential of DHA as a well-tolerated antitumor TGF-β1 pathway inhibitor.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ning Gao
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ruihua Yang
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qi Wang
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jing Ji
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Ling Ma
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qian He
- Department of Clinical Laboratories, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|