1
|
Wang Y, Sun Z, Wang Q, Xie J, Yu L. Transcriptomics and metabolomics revealed that phosphate improves the cold tolerance of alfalfa. FRONTIERS IN PLANT SCIENCE 2023; 14:1100601. [PMID: 36968379 PMCID: PMC10034057 DOI: 10.3389/fpls.2023.1100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Alfalfa (Medicago sativa L.) is a highly nutritious leguminous forage that plays an essential role in animal husbandry. In the middle and high latitudes of the northern hemisphere, there are problems with its low rates of overwintering and production. The application of phosphate (P) is an important measure to improve the cold resistance and production of alfalfa, but little is known about the mechanism of P in improving the cold resistance of alfalfa. METHODS This study integrated the transcriptome and metabolome to explain the mechanism of alfalfa in response to low-temperature stress under two applications of P (50 and 200 mg kg-1) and a control of none applied. RESULTS The application of P fertilizer improved the root structure and increased the content of soluble sugar and soluble protein in the root crown. In addition, there were 49 differentially expressed genes (DEGs) with 23 upregulated and 24 metabolites with 12 upregulated when 50 mg kg-1 of P was applied. In contrast, there were 224 DEGs with 173 upregulated and 12 metabolites with 6 upregulated in the plants treated with 200 mg kg-1 of P compared with the Control Check (CK). These genes and metabolites were significantly enriched in the biosynthesis of other secondary metabolites and the metabolic pathways of carbohydrates and amino acids. The integration of the transcriptome and metabolome indicated that P affected the biosynthesis of N-acetyl-L-phenylalanine, L-serine, lactose, and isocitrate during the period of increasing cold. It could also affect the expression of related genes that regulate cold tolerance in alfalfa. DISCUSSION Our findings could contribute to a deeper understanding of the mechanism that alfalfa uses to tolerate cold and lay a theoretical foundation for breeding alfalfa that is highly efficient at utilizing phosphorus.
Collapse
Affiliation(s)
- Yuntao Wang
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Zhen Sun
- College of Grassland, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiqi Wang
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Jihong Xie
- Grassland Research Institute, Chinese Academy of Agricultural Science, Hohhot, Inner Mongolia, China
| | - Linqing Yu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
2
|
Kiremitci BZ, Gürler ES, Kiraz Y. Molecular characterization of multiple myeloma. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy that occurs when plasma cells, a type of white blood cell, grow out of control and start to overproduce antibodies that accumulates in blood and bone marrow. Despite the recent advance the survival rate for MM has not been increased significantly, which opens the need for identifying new molecular targets. This review article presents the most frequently observed gene mutations (KRAS (22.0%), NRAS (18.0%), DIS3 (9.3%), TTN (8.3%), ZNF717 (8.3%), TENT5C (7.3%), TP53 (7.3%) %), BRAF (6.3%), MUC16 (6.3%), RYR2 (5.4%), LRP1B (5.4%)) in MM patients and its rates, correlations, clinical significance, importance in the framework of MM disease and potential novel targets which are collected from the literature. The genes that are mutated in MM patients (211) taken from cBioportal data set. In conclusion, in the study conducted in MM patients, the 3 genes with the most frequent mutations were recorded as KRAS, NRAS and DIS3, respectively. In addition, in the context of our literature reviews and the data obtained, it appears that the TZNF717, TTN, MUC16, RYR2 genes need further study within the framework of MM.
Collapse
|
3
|
Ning Z, Yang L, Yan X, Wang D, Hua Y, Shi W, Lin J, Meng Z. Effect and mechanism of Lenvatinib@H-MnO2-FA drug delivery system in targeting intrahepatic cholangiocarcinoma. Curr Pharm Des 2022; 28:743-750. [PMID: 35049427 DOI: 10.2174/1381612828666220113161712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND To investigate the effects of the Lenvatinib@H-MnO2-FA administration system on the proliferation and apoptosis of Intrahepatic cholangiocarcinoma (ICC) and the underlying molecular mechanism. MATERIALS AND METHODS In this research, hollow MnO2 (H-MnO2) was synthesized via the modified Stöber method, and H-MnO2 was modified with polyethylene glycol-bis (Amine) (NH2-PEG-NH2) and folic acid (FA) to obtain H-MnO2-PEG-FA (H-MnO2-FA). Lenvatinib was coated in the hollow cavity of H-MnO2-PEG-FA to further form a nanometre drug-carrying system (lenvatinib@H-MnO2-PEG-FA). Lenvatinib@H-MnO2-FA was characterized through transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FT-IR) was used to verify that Lenvatinib was loaded on nanoparticles. Functionally, confocal laser scanning microscopy (CLSM), 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI) staining, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed to determine the effect of lenvatinib@H-MnO2-FA on the proliferation and apoptosis of ICC cells (9810 cells). Finally, the protein levels of Raf-1MEK1/2-ERK1/2 signalling pathway components were detected through Western blotting analysis. RESULTS We successfully synthesised a Lenvatinib@H-MnO2-PEG-FA administration system. The resulting nanomaterials had excellent biological stability and improved targeting effects. Functionally, lenvatinib@H-MnO2-FA inhibited the proliferation of 9810 cells. The Bcl-2 protein level was significantly downregulated, and the caspase-3 protein level was significantly upregulated, indicating that lenvatinib@H-MnO2-PEG-FA promoted the apoptosis of 9810 cells. Mechanistically, Lenvatinib@H-MnO2-FA increased the phosphorylation levels of Raf, MEK1/2 and ERK1/2. CONCLUSIONS H-MnO2-FA can more effectively deliver Lenvatinib to inhibit proliferation and promote apoptosis in ICC, could be the promising drug delivery nano-vehicles for delivery drugs.
Collapse
Affiliation(s)
- Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xia Yan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Dan Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongqiang Hua
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weidong Shi
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junhua Lin
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
4
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
5
|
Footprints of microRNAs in Cancer Biology. Biomedicines 2021; 9:biomedicines9101494. [PMID: 34680611 PMCID: PMC8533183 DOI: 10.3390/biomedicines9101494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in post-transcriptional gene regulation. Over the past years, various studies have demonstrated the role of aberrant miRNA expression in the onset of cancer. The mechanisms by which miRNA exerts its cancer-promoting or inhibitory effects are apparent through the various cancer hallmarks, which include selective proliferative advantage, altered stress response, vascularization, invasion and metastasis, metabolic rewiring, the tumor microenvironment and immune modulation; therefore, this review aims to highlight the association between miRNAs and the various cancer hallmarks by dissecting the mechanisms of miRNA regulation in each hallmark separately. It is hoped that the information presented herein will provide further insights regarding the role of cancer and serve as a guideline to evaluate the potential of microRNAs to be utilized as biomarkers and therapeutic targets on a larger scale in cancer research.
Collapse
|
6
|
Liu F, Wang YL, Wei JM, Huang ZD. Upregulation of circ_0000142 promotes multiple myeloma progression by adsorbing miR-610 and upregulating AKT3 expression. J Biochem 2021; 169:327-336. [PMID: 32970816 DOI: 10.1093/jb/mvaa106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) play an important regulatory role in a variety of malignancies. Nevertheless, the role of circ_0000142 in multiple myeloma (MM) and its regulatory mechanism remains largely unknown. Real-time polymerase chain reaction was employed to detect the expressions of circ_0000142 and miR-610 in MM tissues and cell lines. The expression of AKT3 and apoptosis-related proteins (Bcl-2, Bax) in MM cells was detected by western blot. The correlation between the expression level of circ_0000142 and the clinicopathological parameters of MM patients was analysed. Cell proliferation, apoptosis, migration and invasion were monitored by Cell Counting Kit 8 assay, flow cytometry analysis and Transwell assay, respectively. The dual-luciferase reporter gene assay and RNA immunoprecipitation assay were employed to verify the targeting relationship between circ_0000142 and miR-610. In this study, it was demonstrated that, circ_0000142 was highly expressed in MM patients, and its high expression level was significantly associated with increased International Staging System and Durie-Salmon stage. Overexpression of circ_0000142 enhanced MM cell proliferation, migration, invasion and suppressed cell apoptosis, while knocking down circ_0000142 had the opposite effects. Mechanistically, circ_0000142 functioned as a competitive endogenous RNA, directly targeting miR-610 and positively regulating AKT3 expression. In brief, circ_0000142 enhances the proliferation and metastasis of MM cells by modulating the miR-610/AKT3 axis.
Collapse
Affiliation(s)
| | | | | | - Zhao-Dong Huang
- Department of Intervention, Linyi Central Hospital, No. 17, Health Road, Yishui County, Linyi City, 276400 Shandong Province, China
| |
Collapse
|
7
|
Peng Z, Gong Y, Liang X. Role of FAT1 in health and disease. Oncol Lett 2021; 21:398. [PMID: 33777221 PMCID: PMC7988705 DOI: 10.3892/ol.2021.12659] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
FAT atypical cadherin 1 (FAT1), which encodes a protocadherin, is one of the most frequently mutated genes in human cancer. Over the past 20 years, the role of FAT1 in tissue growth and in the development of diseases has been extensively studied. There is definitive evidence that FAT1 serves a substantial role in the maintenance of organs and development, and its expression appears to be tissue-specific. FAT1 activates a variety of signaling pathways through protein-protein interactions, including the Wnt/β-catenin, Hippo and MAPK/ERK signaling pathways, which affect cell proliferation, migration and invasion. Abnormal FAT1 expression may lead to the development of tumors and may affect prognosis. Therefore, FAT1 may have potential in tumor therapy. The structural and functional changes mediated by FAT1, its tissue distribution and changes in FAT1 expression in human diseases are described in the present review, which provides further insight for understanding the role of FAT1 in development and disease.
Collapse
Affiliation(s)
- Zizhen Peng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanyu Gong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoqiu Liang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
8
|
Wang L, Guo J, Zhou J, Wang D, Kang X, Zhou L. NF-κB maintains the stemness of colon cancer cells by downregulating miR-195-5p/497-5p and upregulating MCM2. J Exp Clin Cancer Res 2020; 39:225. [PMID: 33109220 PMCID: PMC7592593 DOI: 10.1186/s13046-020-01704-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colon cancer represents one of the leading causes of gastrointestinal tumors in industrialized countries, and its incidence appears to be increasing at an alarming rate. Accumulating evidence has unveiled the contributory roles of cancer stem cells (CSCs) in tumorigenicity, recurrence, and metastases. The functions of NF-kappa B (NF-κB) activation on cancer cell survival, including colon cancer cells have encouraged us to study the role of NF-κB in the maintenance of CSCs in colon cancer. METHODS Tumor samples and matched normal samples were obtained from 35 colon cancer cases. CSCs were isolated from human colon cancer cell lines, where the stemness of the cells was evaluated by cell viability, colony-forming, spheroid-forming, invasion, migration, and apoptosis assays. NF-κB activation was then performed in subcutaneous tumor models of CSCs by injecting lipopolysaccharides (LPS) i.p. RESULTS We found that NF-κB activation could reduce the expression of miR-195-5p and miR-497-5p, where these two miRNAs were determined to be downregulated in colon cancer tissues, cultured colon CSCs, and LPS-injected subcutaneous tumor models. Elevation of miR-195-5p and miR-497-5p levels by their specific mimic could ablate the effects of NF-κB on the stemness of colon cancer cells in vivo and in vitro, suggesting that NF-κB could maintain the stemness of colon cancer cells by downregulating miR-195-5p/497-5p. MCM2 was validated as the target gene of miR-195-5p and miR-497-5p in cultured colon CSCs. Overexpression of MCM2 was shown to restore the stemness of colon cancer cells in the presence of miR-195-5p and miR-497-5p, suggesting that miR-195-5p and miR-497-5p could impair the stemness of colon cancer cells by targeting MCM2 in vivo and in vitro. CONCLUSIONS Our work demonstrates that the restoration of miR-195-5p and miR-497-5p may be a therapeutic strategy for colon cancer treatment in relation to NF-κB activation.
Collapse
Affiliation(s)
- Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jinxiang Guo
- Department of Respiratory Medicine, Taian Municipal Hospital, Taian, 271000, China
| | - Jin Zhou
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of QingdaoUniversity Medical, Yantai, 264000, China
| | - Dongyang Wang
- Department of Endoscopy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiuwen Kang
- Department of Intensive Care Unit, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Lei Zhou
- Department of Oncological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
9
|
MicroRNAs as regulators of ERK/MAPK pathway: A comprehensive review. Biomed Pharmacother 2020; 132:110853. [PMID: 33068932 DOI: 10.1016/j.biopha.2020.110853] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/19/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
The ERK/MAPK cascade is one the four distinctive MAPK cascades which transmit extracellular signals to intracellular targets. This cascade has an important role in the regulation of several fundamental processes such as proliferation, differentiation and cell response to diverse extrinsic stresses. Moreover, several studies have shown participation of this cascade in the pathogenesis of cancer. Recent investigations have unraveled interaction between microRNAs (miRNAs) and ERK/MAPK cascade. These transcripts reside in both upstream and downstream of this cascade, regulating or being regulated by ERK/MAPK proteins. In the current review, we summarize the role of miRNAs in the regulation of ERK/MAPK and their contribution in the pathogenesis of human disorders with particular focus on cancers.
Collapse
|
10
|
Evaluating of miR-184, miR-497, miR-378, miR-103 and miR-506 expression level in non-small cell lung cancer patients tissues compared with their normal marginal tissues. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Zhou C, Tan Y, Wang Y, Liao F, Wang Q, Li J, Peng S, Peng X, Zou Y. PM 2.5-inducible long non-coding RNA (NONHSAT247851.1) is a positive regulator of inflammation through its interaction with raf-1 in HUVECs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110476. [PMID: 32278143 DOI: 10.1016/j.ecoenv.2020.110476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Several studies have demonstrated that PM2.5 inhalation is associated with an increased risk of cerebrovascular disease (CVD), in which inflammation plays an important role. The mechanisms of this disease are not fully understood to date. Long non-coding RNAs (lncRNAs) are involved in many pathophysiological processes, such as immune responses; however, their functions associated with inflammation are largely unexplored. High-throughput sequencing assay and obtained numerous lncRNAs that altered the expression in response to PM2.5 treatment in HUVECs. NONHSAT247851.1 was also identified, which was significantly up-regulated to control the expression of immune response genes. Mechanistically, the results indicated that NONHSAT247851.1 knockdown reduced the expression of IL1β. In study, we investigated NONHSAT247851.1 as a promoter in regulating immune response genes via binding with raf-1 to regulate the phosphorylation level of p65 protein in HUVECs. The data collected suggests that NONHSAT247851.1 regulates inflammation via interaction with raf-1 to control the inflammatory expression in PM2.5 exposure.
Collapse
Affiliation(s)
- CaiLan Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yi Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - YuYu Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - FangPing Liao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - QiuLing Wang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - JingLin Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - SuJuan Peng
- School of Public Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - XiaoWu Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China.
| | - YunFeng Zou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
12
|
Song W, Fu T. Circular RNA-Associated Competing Endogenous RNA Network and Prognostic Nomogram for Patients With Colorectal Cancer. Front Oncol 2019; 9:1181. [PMID: 31781492 PMCID: PMC6857072 DOI: 10.3389/fonc.2019.01181] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Genetic characteristics remain underutilized for establishing prognostic models for colorectal cancer (CRC). We explored the underlying regulatory mechanisms of circular RNAs (circRNAs) that act as competing endogenous RNAs (ceRNAs) and constructed a gene-based nomogram to predict overall survival (OS) in patients with CRC. Methods: We obtained circRNA expression profiling data from the Gene Expression Omnibus (GEO) database. MicroRNA (miRNA) and mRNA expression profiles, with associated clinical data, were obtained from The Cancer Genome Atlas (TCGA). A ceRNA network was established using Cytoscape. Interactions between differential genes were analyzed, and hub genes were identified using the cytoHubba application. The R package "clusterProfiler" was used to evaluate the Gene Ontology (GO) annotations of the differentially expressed mRNAs and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Database-extracted patients were randomized into a training and validation cohorts. A prognostic model was developed using the training set based on multivariate Cox analyses and was then assessed in the validation set. The accuracy of the model was evaluated using discrimination and calibration plots. Results: Thirteen circRNAs, 62 miRNAs, and 301 mRNAs were used to construct the ceRNA network; 10 hub genes were identified via the PPI network. Next, a circRNA- miRNA hub of gene-regulatory modules was established based on four differentially expressed circRNAs, eight differentially expressed miRNAs, and nine differentially expressed mRNAs (DEmRNAs). GO and KEGG pathway analyses indicated the possible association of DEmRNAs with CRC onset and progression. Multivariate analyses revealed that age, tumor stage, and CXCR5 expression were independent risk factors for OS. A CXCR5-based model was developed to predict the OS of patients with CRC in our training set. Our nomogram showed relatively good accuracy, with C-indices of 0.757 and 0.702 in the training and validation sets, respectively. The areas under the curve of the nomograms predicting 3- and 5-years OS were 0.749 and 0.805 in the training set and 0.706 and 0.779 in the validation set, respectively. Conclusions: Our data suggested that the hsa_circ_00001666/has-mir-1229/CXCR5 axis plays an important role in the pathogenesis of CRC, thereby identifying a potential therapeutic target. The proposed CXCR5-based nomogram may also assist surgeons in devising personalized treatments for patients with this disease.
Collapse
Affiliation(s)
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Zhu Q, Li Y, Guo Y, Hu L, Xiao Z, Liu X, Wang J, Xu Q, Tong X. Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J Cell Mol Med 2019; 23:7395-7405. [PMID: 31483572 PMCID: PMC6815839 DOI: 10.1111/jcmm.14601] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/10/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression and dysfunction of long non-coding RNAs (lncRNAs) have been identified as critical factors governing the initiation and progression of different human cancers, including diffuse large B-cell lymphoma (DLBCL). LncRNA small nucleolar RNA host gene 16 (SNHG16) has been recognized as a tumour-promoting factor in various types of cancer. However, the biological role of SNHG16 and its underlying mechanism are still unknown in DLBCL. Here we disclosed that SNHG16 was overexpressed in DLBCL tissues and the derived cell lines. SNHG16 knockdown significantly suppressed cell proliferation and cell cycle progression, and it induced apoptosis of DLBCL cells in vitro. Furthermore, silencing of SNHG16 markedly repressed in vivo growth of OCI-LY7 cells. Mechanistically, SNHG16 directly interacted with miR-497-5p by acting as a competing endogenous RNA (ceRNA) and inversely regulated the abundance of miR-497-5p in DLBCL cells. Moreover, the proto-oncogene proviral integration site for Moloney murine leukaemia virus 1 (PIM1) was identified as a novel direct target of miR-497-5p. SNHG16 overexpression rescued miR-497-5p-induced down-regulation of PIM1 in DLBCL cells. Importantly, restoration of PIM1 expression reversed SNHG16 knockdown-induced inhibition of proliferation, G0/G1 phase arrest and apoptosis of OCI-LY7 cells. Our study suggests that the SNHG16/miR-497-5p/PIM1 axis may provide promising therapeutic targets for DLBCL progression.
Collapse
Affiliation(s)
- Qiaojuan Zhu
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Guo
- Graduate Department, BengBu Medical College, BengBu, China
| | - Linjun Hu
- The Medical College of Qingdao University, Qingdao, China
| | - Zunqiang Xiao
- Department of Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Liu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Jiahui Wang
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|