1
|
Shenoy US, Adiga D, Alhedyan F, Kabekkodu SP, Radhakrishnan R. HOXA9 transcription factor is a double-edged sword: from development to cancer progression. Cancer Metastasis Rev 2024; 43:709-728. [PMID: 38062297 PMCID: PMC11156722 DOI: 10.1007/s10555-023-10159-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 04/02/2024]
Abstract
The HOXA9 transcription factor serves as a molecular orchestrator in cancer stemness, epithelial-mesenchymal transition (EMT), metastasis, and generation of the tumor microenvironment in hematological and solid malignancies. However, the multiple modes of regulation, multifaceted functions, and context-dependent interactions responsible for the dual role of HOXA9 as an oncogene or tumor suppressor in cancer remain obscure. Hence, unravelling its molecular complexities, binding partners, and interacting signaling molecules enables us to comprehend HOXA9-mediated transcriptional programs and molecular crosstalk. However, it is imperative to understand its central role in fundamental biological processes such as embryogenesis, foetus implantation, hematopoiesis, endothelial cell proliferation, and tissue homeostasis before designing targeted therapies. Indeed, it presents an enormous challenge for clinicians to selectively target its oncogenic functions or restore tumor-suppressive role without altering normal cellular functions. In addition to its implications in cancer, the present review also focuses on the clinical applications of HOXA9 in recurrence and drug resistance, which may provide a broader understanding beyond oncology, open new avenues for clinicians for accurate diagnoses, and develop personalized treatment strategies. Furthermore, we have also discussed the existing therapeutic options and accompanying challenges in HOXA9-targeted therapies in different cancer types.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Faisal Alhedyan
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Filippopoulou K, Konstantinides N. Evolution of patterning. FEBS J 2024; 291:663-671. [PMID: 37943156 DOI: 10.1111/febs.16995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 11/10/2023]
Abstract
Developing tissues are patterned in space and time; this enables them to differentiate their cell types and form complex structures to support different body plans. Although space and time are two independent entities, there are many examples of spatial patterns that originate from temporal ones. The most prominent example is the expression of the genes hunchback, Krüppel, pdm, and castor, which are expressed temporally in the neural stem cells of the Drosophila ventral nerve cord and spatially along the anteroposterior axis of the blastoderm stage embryo. In this Viewpoint, we investigate the relationship between space and time in specific examples of spatial and temporal patterns with the aim of gaining insight into the evolutionary history of patterning.
Collapse
|
3
|
Rekaik H, Lopez-Delisle L, Hintermann A, Mascrez B, Bochaton C, Mayran A, Duboule D. Sequential and directional insulation by conserved CTCF sites underlies the Hox timer in stembryos. Nat Genet 2023; 55:1164-1175. [PMID: 37322110 PMCID: PMC10335938 DOI: 10.1038/s41588-023-01426-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
During development, Hox genes are temporally activated according to their relative positions on their clusters, contributing to the proper identities of structures along the rostrocaudal axis. To understand the mechanism underlying this Hox timer, we used mouse embryonic stem cell-derived stembryos. Following Wnt signaling, the process involves transcriptional initiation at the anterior part of the cluster and a concomitant loading of cohesin complexes enriched on the transcribed DNA segments, that is, with an asymmetric distribution favoring the anterior part of the cluster. Chromatin extrusion then occurs with successively more posterior CTCF sites acting as transient insulators, thus generating a progressive time delay in the activation of more posterior-located genes due to long-range contacts with a flanking topologically associating domain. Mutant stembryos support this model and reveal that the presence of evolutionary conserved and regularly spaced intergenic CTCF sites controls the precision and the pace of this temporal mechanism.
Collapse
Affiliation(s)
- Hocine Rekaik
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélie Hintermann
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Célia Bochaton
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexandre Mayran
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Denis Duboule
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.
- Collège de France, Paris, France.
| |
Collapse
|
4
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
5
|
Essay the (unusual) heuristic value of Hox gene clusters; a matter of time? Dev Biol 2022; 484:75-87. [PMID: 35182536 DOI: 10.1016/j.ydbio.2022.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/22/2022]
Abstract
Ever since their first report in 1984, Antennapedia-type homeobox (Hox) genes have been involved in such a series of interesting observations, in particular due to their conserved clustered organization between vertebrates and arthropods, that one may legitimately wonder about the origin of this heuristic value. In this essay, I first consider different examples where Hox gene clusters have been instrumental in providing conceptual advances, taken from various fields of research and mostly involving vertebrate embryos. These examples touch upon our understanding of genomic evolution, the revisiting of 19th century views on the relationships between development and evolution and the building of a new framework to understand long-range and pleiotropic gene regulation during development. I then discuss whether the high value of the Hox gene family, when considered as an epistemic object, is related to its clustered structure (and the absence thereof in some animal species) and, if so, what is it in such particular genetic oddities that made them so generous in providing the scientific community with interesting information.
Collapse
|
6
|
Physical Laws Shape Up HOX Gene Collinearity. J Dev Biol 2021; 9:jdb9020017. [PMID: 34066586 PMCID: PMC8162341 DOI: 10.3390/jdb9020017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023] Open
Abstract
Hox gene collinearity (HGC) is a multi-scalar property of many animal phyla particularly important in embryogenesis. It relates entities and events occurring in Hox clusters inside the chromosome DNA and in embryonic tissues. These two entities differ in linear size by more than four orders of magnitude. HGC is observed as spatial collinearity (SC), where the Hox genes are located in the order (Hox1, Hox2, Hox3 …) along the 3′ to 5′ direction of DNA in the genome and a corresponding sequence of ontogenetic units (E1, E2, E3, …) located along the Anterior—Posterior axis of the embryo. Expression of Hox1 occurs in E1, Hox2 in E2, Hox3 in E3, etc. Besides SC, a temporal collinearity (TC) has been also observed in many vertebrates. According to TC, first Hox1 is expressed in E1; later, Hox2 is expressed in E2, followed by Hox3 in E3, etc. Lately, doubt has been raised about whether TC really exists. A biophysical model (BM) was formulated and tested during the last 20 years. According to BM, physical forces are created which pull the Hox genes one after the other, driving them to a transcription factory domain where they are transcribed. The existing experimental data support this BM description. Symmetry is a physical–mathematical property of matter that was explored in depth by Noether who formulated a ground-breaking theory (NT) that applies to all sizes of matter. NT may be applied to biology in order to explain the origin of HGC in animals developing not only along the A/P axis, but also to animals with circular symmetry.
Collapse
|
7
|
Durston AJ. A Tribute to Lewis Wolpert and His Ideas on the 50th Anniversary of the Publication of His Paper 'Positional Information and the Spatial Pattern of Differentiation'. Evidence for a Timing Mechanism for Setting Up the Vertebrate Anterior-Posterior (A-P) Axis. Int J Mol Sci 2020; 21:E2552. [PMID: 32272563 PMCID: PMC7177403 DOI: 10.3390/ijms21072552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This article is a tribute to Lewis Wolpert and his ideas on the occasion of the recent 50th anniversary of the publication of his article 'Positional Information and the Spatial Pattern of Differentiation'. This tribute relates to another one of his ideas: his early 'Progress Zone' timing model for limb development. Recent evidence is reviewed showing a mechanism sharing features with this model patterning the main body axis in early vertebrate development. This tribute celebrates the golden era of Developmental Biology.
Collapse
Affiliation(s)
- Antony J Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
8
|
Durston AJ. Some Questions and Answers About the Role of Hox Temporal Collinearity in Vertebrate Axial Patterning. Front Cell Dev Biol 2019; 7:257. [PMID: 31850338 PMCID: PMC6895010 DOI: 10.3389/fcell.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023] Open
Abstract
The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.
Collapse
|
9
|
Kudlicki A. Why a Constant Number of Vertebrae? Digital Control of Segmental Identity during Vertebrate Development: The Somite Cycle Controls a Digital, Chromatin-Based Counter That Defines Segmental Identity and Body Plans in Vertebrate Animals. Bioessays 2019; 42:e1900133. [PMID: 31755133 DOI: 10.1002/bies.201900133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/01/2019] [Indexed: 11/06/2022]
Abstract
It is not understood how the numbers and identities of vertebrae are controlled during mammalian development. The remarkable robustness and conservation of segmental numbers may suggest the digital nature of the underlying process. The study proposes a mechanism that allows cells to obtain and store the segmental information in digital form, and to produce a pattern of chromatin accessibility that in turn regulates Hox gene expression specific to the metameric segment. The model requires that a regulatory element be present such that the number of occurrences of the motif between two consecutive Hox genes equals the number of segments under the control of the anterior gene. This is true for the recently discovered hydroxyl radical cleavage 3bp-periodic (HRC3) motif, associated with histone modifications and developmental genes. The finding not only allows the correct prediction of the numbers of segments using only sequence information, but also resolves the 40-year-old enigma of the function of temporal and spatial collinearity of Hox genes. The logic of the mechanism is illustrated in the attached animated video. How different aspects of the proposed mechanism can be tested experimentally is also discussed.
Collapse
Affiliation(s)
- Andrzej Kudlicki
- Institute for Translational Sciences, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, USA
| |
Collapse
|