1
|
Lopez-Pajares V, Bhaduri A, Zhao Y, Gowrishankar G, Donohue LKH, Guo MG, Siprashvili Z, Miao W, Nguyen DT, Yang X, Li AM, Tung ASH, Shanderson RL, Winge MCG, Meservey LM, Srinivasan S, Meyers RM, Guerrero A, Ji AL, Garcia OS, Tao S, Gambhir SS, Long JZ, Ye J, Khavari PA. Glucose modulates IRF6 transcription factor dimerization to enable epidermal differentiation. Cell Stem Cell 2025:S1934-5909(25)00088-8. [PMID: 40120584 DOI: 10.1016/j.stem.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Non-energetic roles for glucose are largely unclear, as is the interplay between transcription factors (TFs) and ubiquitous biomolecules. Metabolomic analyses uncovered elevation of intracellular glucose during differentiation of diverse cell types. Human and mouse tissue engineered with glucose sensors detected a glucose gradient that peaked in the outermost differentiated layers of the epidermis. Free glucose accumulation was essential for epidermal differentiation and required the SGLT1 glucose transporter. Glucose affinity chromatography uncovered glucose binding to diverse regulatory proteins, including the IRF6 TF. Direct glucose binding enabled IRF6 dimerization, DNA binding, genomic localization, and induction of IRF6 target genes, including essential pro-differentiation TFs GRHL1, GRHL3, HOPX, and PRDM1. These data identify a role for glucose as a gradient morphogen that modulates protein multimerization in cellular differentiation.
Collapse
Affiliation(s)
- Vanessa Lopez-Pajares
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Aparna Bhaduri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Yang Zhao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gayatri Gowrishankar
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Laura K H Donohue
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Margaret G Guo
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Duy T Nguyen
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xue Yang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Alan Sheng-Hwa Tung
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Ronald L Shanderson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA
| | - Marten C G Winge
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lindsey M Meservey
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robin M Meyers
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Angela Guerrero
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew L Ji
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Omar S Garcia
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shiying Tao
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sanjiv S Gambhir
- Departments of Bioengineering and Radiology, Stanford University, Stanford, CA 94305, USA; Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University, Stanford, CA 94350, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Cancer Biology, Stanford University, Stanford, CA 94305, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA 94304, USA.
| |
Collapse
|
2
|
Smirnov A, Lena AM, Tosetti G, Yang X, Cappello A, Helmer Citterich M, Melino G, Candi E. Epigenetic priming of an epithelial enhancer by p63 and CTCF controls expression of a skin-restricted gene XP33. Cell Death Discov 2023; 9:446. [PMID: 38065940 PMCID: PMC10709559 DOI: 10.1038/s41420-023-01716-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 07/11/2024] Open
Abstract
The transcription factor p63 is a renowned master regulator of gene expression of stratified epithelia. While multiple proteins have been identified as p63 bona fide targets, little is known about non-coding RNAs (ncRNAs) whose transcription is controlled by p63. Here, we describe a skin-specific non-coding RNA XP33 as a novel target of p63. XP33 levels are increased during keratinocyte differentiation in vitro, while its depletion results in decreased expression of late cornified gene LCE2D. By using publicly available multi-omics data, we show that CTCF and p63 establish an epithelial enhancer to prime XP33 transcription in a tissue-restricted manner. XP33 promoter and enhancer form a chromatin loop exclusively in keratinocytes but not in other cell types. Moreover, the XP33 enhancer is occupied by differentiation-specific factors that control XP33 transcription. Altogether, we identify a tissue-specific non-coding RNA whose expression is epigenetically regulated by p63 and CTCF.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
| | - Giulia Tosetti
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
| | - Xue Yang
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, 215000, Suzhou, China
| | - Angela Cappello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
- Interdisciplinary Department of Medicine University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Manuela Helmer Citterich
- Biology Department, University of Rome "Tor Vergata", Via della Ricerca Scientifica, snc, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
3
|
Sun SY, Crago A. MDM2 Implications for Potential Molecular Pathogenic Therapies of Soft-Tissue Tumors. J Clin Med 2023; 12:3638. [PMID: 37297833 PMCID: PMC10253559 DOI: 10.3390/jcm12113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/14/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Murine double minute 2 (MDM2, gene name MDM2) is an oncogene that mainly codes for a protein that acts as an E3 ubiquitin ligase, which targets the tumor suppressor protein p53 for degradation. Overexpression of MDM2 regulates the p53 protein levels by binding to it and promoting its degradation by the 26S proteasome. This leads to the inhibition of p53's ability to regulate cell cycle progression and apoptosis, allowing for uncontrolled cell growth, and can contribute to the development of soft-tissue tumors. The application of cellular stress leads to changes in the binding of MDM2 to p53, which prevents MDM2 from degrading p53. This results in an increase in p53 levels, which triggers either cell cycle arrest or apoptosis. Inhibiting the function of MDM2 has been identified as a potential therapeutic strategy for treating these types of tumors. By blocking the activity of MDM2, p53 function can be restored, potentially leading to tumor cell death and inhibiting the growth of tumors. However, further research is needed to fully understand the implications of MDM2 inhibition for the treatment of soft-tissue tumors and to determine the safety and efficacy of these therapies in clinical trials. An overview of key milestones and potential uses of MDM2 research is presented in this review.
Collapse
Affiliation(s)
- Sylvia Yao Sun
- Sarcoma Biology Laboratory, Department of Surgery, Memorial Sloan Kettering Cancer Center, 417 E 618 St, New York, NY 10065, USA
| | - Aimee Crago
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Surgery, Weill Cornell Medical Center, 525 E 68th St M 404, New York, NY 10065, USA
| |
Collapse
|
4
|
Smirnov A, Melino G, Candi E. Gene expression in organoids: an expanding horizon. Biol Direct 2023; 18:11. [PMID: 36964575 PMCID: PMC10038780 DOI: 10.1186/s13062-023-00360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/26/2023] Open
Abstract
Recent development of human three-dimensional organoid cultures has opened new doors and opportunities ranging from modelling human development in vitro to personalised cancer therapies. These new in vitro systems are opening new horizons to the classic understanding of human development and disease. However, the complexity and heterogeneity of these models requires cutting-edge techniques to capture and trace global changes in gene expression to enable identification of key players and uncover the underlying molecular mechanisms. Rapid development of sequencing approaches made possible global transcriptome analyses and epigenetic profiling. Despite challenges in organoid culture and handling, these techniques are now being adapted to embrace organoids derived from a wide range of human tissues. Here, we review current state-of-the-art multi-omics technologies, such as single-cell transcriptomics and chromatin accessibility assays, employed to study organoids as a model for development and a platform for precision medicine.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00166, Rome, Italy.
| |
Collapse
|
5
|
Smirnov A, Candi E. Take a breath: oxygen sensing of epidermal differentiation. FEBS J 2023; 290:2029-2031. [PMID: 36811892 DOI: 10.1111/febs.16752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Skin serves as a barrier to protect our body from injury, pathogens and trans-epidermal water loss. It is the only tissue directly exposed to oxygen besides lungs. Air exposure is an essential step of in vitro generation skin graft. However, the role of oxygen in this process remains hitherto unclear. Teshima et al. unveiled the impact of the hypoxia-inducible factor (HIF) pathway on epidermal differentiation in three-dimensional skin models. The authors of this work describe how air-lifting of organotypic epidermal cultures impairs HIFs activity, leading to a proper terminal differentiation of keratinocytes and stratification.
Collapse
Affiliation(s)
- Artem Smirnov
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, Torvergata Oncoscience Research Centre of Excellence, TOR, University of Rome "Tor Vergata", Rome, Italy.,Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), Rome, Italy
| |
Collapse
|
6
|
Mallick P, Maity S, Chakrabarti O, Chakrabarti S. Role of systems biology and multi-omics analyses in delineating spatial interconnectivity and temporal dynamicity of ER stress mediated cellular responses. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119210. [PMID: 35032474 DOI: 10.1016/j.bbamcr.2022.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/01/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous organelle involved in calcium storage, lipid biosynthesis, protein folding and processing. Many patho-physiological conditions and pharmacological agents are known to perturb normal ER function and can lead to ER stress, which severely compromise protein folding mechanism and hence poses high risk of proteotoxicity. Upon sensing ER stress, the different stress signaling pathways interconnect with each other and work together to preserve cellular homeostasis. ER stress response is a part of the integrative stress response (ISR) and might play an important role in the pathogenesis of chronic neurodegenerative diseases, where misfolded protein accumulation and cell death are common. The initiation, manifestation and progression of ER stress mediated unfolded protein response (UPR) is a complex procedure involving multiple proteins, pathways and cellular organelles. To understand the cause and consequences of such complex processes, implementation of an integrative holistic approach is required to identify novel players and regulators of ER stress. As multi-omics data-based systems analyses have shown potential to unravel the underneath molecular mechanism of complex biological systems, it is important to emphasize the utility of this approach in understanding the ER stress biology. In this review we first discuss the ER stress signaling pathways and regulatory players, along with their inter-connectivity. We next highlight the importance of systems and network biology approaches using multi-omics data in understanding ER stress mediated cellular responses. This report would help advance our current understanding of the multivariate spatial interconnectivity and temporal dynamicity of ER stress.
Collapse
Affiliation(s)
- Priyanka Mallick
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sebabrata Maity
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, India.
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, IICB TRUE Campus, CN-6, Sector 5, Salt Lake, Kolkata Pin 700091, WB, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
7
|
Donati V, Peres C, Nardin C, Scavizzi F, Raspa M, Ciubotaru CD, Bortolozzi M, Pedersen MG, Mammano F. Calcium Signaling in the Photodamaged Skin: In Vivo Experiments and Mathematical Modeling. FUNCTION 2021; 3:zqab064. [PMID: 35330924 PMCID: PMC8788836 DOI: 10.1093/function/zqab064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/07/2023] Open
Abstract
The epidermis forms an essential barrier against a variety of insults. The overall goal of this study was to shed light not only on the effects of accidental epidermal injury, but also on the mechanisms that support laser skin resurfacing with intra-epidermal focal laser-induced photodamage, a widespread medical practice used to treat a range of skin conditions. To this end, we selectively photodamaged a single keratinocyte with intense, focused and pulsed laser radiation, triggering Ca2+ waves in the epidermis of live anesthetized mice with ubiquitous expression of a genetically encoded Ca2+ indicator. Waves expanded radially and rapidly, reaching up to eight orders of bystander cells that remained activated for tens of minutes, without displaying oscillations of the cytosolic free Ca2+ concentration ([Formula: see text]). By combining in vivo pharmacological dissection with mathematical modeling, we demonstrate that Ca2+ wave propagation depended primarily on the release of ATP, a prime damage-associated molecular patterns (DAMPs), from the hit cell. Increments of the [Formula: see text] in bystander cells were chiefly due to Ca2+ release from the endoplasmic reticulum (ER), downstream of ATP binding to P2Y purinoceptors. ATP-dependent ATP release though connexin hemichannels (HCs) affected wave propagation at larger distances, where the extracellular ATP concentration was reduced by the combined effect of passive diffusion and hydrolysis due to the action of ectonucleotidases, whereas pannexin channels had no role. Bifurcation analysis suggests basal keratinocytes have too few P2Y receptors (P2YRs) and/or phospholipase C (PLC) to transduce elevated extracellular ATP levels into inositol trisphosphate (IP3) production rates sufficiently large to sustain [Formula: see text] oscillations.
Collapse
Affiliation(s)
- Viola Donati
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Chiara Peres
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Chiara Nardin
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| | | | - Mario Bortolozzi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
- Foundation for Advanced Biomedical Research, Veneto Institute of Molecular Medicine (VIMM), 35129 Padova (PD), Italy
| | - Morten Gram Pedersen
- Department of Information Engineering, University of Padova, 35131 Padova (PD), Italy
- Department of Mathematics “Tullio Levi-Civita”, University of Padova, 35121 Padova (PD), Italy
| | - Fabio Mammano
- Department of Physics and Astronomy “G. Galilei”, University of Padova, 35131 Padova, Italy
- Institute of Biochemistry and Cell Biology (IBBC)-CNR, 00015 Monterotondo (RM), Italy
| |
Collapse
|
8
|
The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation. Nat Genet 2021; 53:1564-1576. [PMID: 34650237 PMCID: PMC8763320 DOI: 10.1038/s41588-021-00947-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/01/2021] [Indexed: 01/24/2023]
Abstract
Transcription factors bind DNA sequence motif vocabularies in cis-regulatory elements (CREs) to modulate chromatin state and gene expression during cell state transitions. A quantitative understanding of how motif lexicons influence dynamic regulatory activity has been elusive due to the combinatorial nature of the cis-regulatory code. To address this, we undertook multiomic data profiling of chromatin and expression dynamics across epidermal differentiation to identify 40,103 dynamic CREs associated with 3,609 dynamically expressed genes, then applied an interpretable deep-learning framework to model the cis-regulatory logic of chromatin accessibility. This analysis framework identified cooperative DNA sequence rules in dynamic CREs regulating synchronous gene modules with diverse roles in skin differentiation. Massively parallel reporter assay analysis validated temporal dynamics and cooperative cis-regulatory logic. Variants linked to human polygenic skin disease were enriched in these time-dependent combinatorial motif rules. This integrative approach shows the combinatorial cis-regulatory lexicon of epidermal differentiation and represents a general framework for deciphering the organizational principles of the cis-regulatory code of dynamic gene regulation.
Collapse
|
9
|
Ganini C, Amelio I, Bertolo R, Bove P, Buonomo OC, Candi E, Cipriani C, Di Daniele N, Juhl H, Mauriello A, Marani C, Marshall J, Melino S, Marchetti P, Montanaro M, Natale ME, Novelli F, Palmieri G, Piacentini M, Rendina EA, Roselli M, Sica G, Tesauro M, Rovella V, Tisone G, Shi Y, Wang Y, Melino G. Global mapping of cancers: The Cancer Genome Atlas and beyond. Mol Oncol 2021; 15:2823-2840. [PMID: 34245122 PMCID: PMC8564642 DOI: 10.1002/1878-0261.13056] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/04/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer genomes have been explored from the early 2000s through massive exome sequencing efforts, leading to the publication of The Cancer Genome Atlas in 2013. Sequencing techniques have been developed alongside this project and have allowed scientists to bypass the limitation of costs for whole-genome sequencing (WGS) of single specimens by developing more accurate and extensive cancer sequencing projects, such as deep sequencing of whole genomes and transcriptomic analysis. The Pan-Cancer Analysis of Whole Genomes recently published WGS data from more than 2600 human cancers together with almost 1200 related transcriptomes. The application of WGS on a large database allowed, for the first time in history, a global analysis of features such as molecular signatures, large structural variations and noncoding regions of the genome, as well as the evaluation of RNA alterations in the absence of underlying DNA mutations. The vast amount of data generated still needs to be thoroughly deciphered, and the advent of machine-learning approaches will be the next step towards the generation of personalized approaches for cancer medicine. The present manuscript wants to give a broad perspective on some of the biological evidence derived from the largest sequencing attempts on human cancers so far, discussing advantages and limitations of this approach and its power in the era of machine learning.
Collapse
Affiliation(s)
- Carlo Ganini
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- IDI‐IRCCSRomeItaly
| | - Ivano Amelio
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Riccardo Bertolo
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Pierluigi Bove
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Oreste Claudio Buonomo
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Eleonora Candi
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- IDI‐IRCCSRomeItaly
| | - Chiara Cipriani
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Nicola Di Daniele
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Alessandro Mauriello
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Carla Marani
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - John Marshall
- Medstar Georgetown University HospitalGeorgetown UniversityWashingtonDCUSA
| | - Sonia Melino
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Manuela Montanaro
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Maria Emanuela Natale
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- San Carlo di Nancy HospitalRomeItaly
| | - Flavia Novelli
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giampiero Palmieri
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Mauro Piacentini
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | | | - Mario Roselli
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giuseppe Sica
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Manfredi Tesauro
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Valentina Rovella
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Giuseppe Tisone
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| | - Yufang Shi
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and ProtectionInstitutes for Translational MedicineSoochow UniversityChina
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and TumorShanghai Institute of Nutrition and HealthShanghai Institutes for Biological SciencesUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Gerry Melino
- Department of Experimental MedicineTorvergata Oncoscience Research Centre of Excellence, TORUniversity of Rome Tor VergataItaly
| |
Collapse
|
10
|
Vildanova M, Vishnyakova P, Saidova A, Konduktorova V, Onishchenko G, Smirnova E. Gibberellic Acid Initiates ER Stress and Activation of Differentiation in Cultured Human Immortalized Keratinocytes HaCaT and Epidermoid Carcinoma Cells A431. Pharmaceutics 2021; 13:pharmaceutics13111813. [PMID: 34834228 PMCID: PMC8622727 DOI: 10.3390/pharmaceutics13111813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Diterpenoid plant hormone gibberellic acid (GA) plays an important role in regulation of plant growth and development and is commonly used in agriculture for activation of plant growth and food production. It is known that many plant-derived compounds have miscellaneous biological effects on animals and humans, influencing specific cellular functions and metabolic pathways. However, the effect of GA on animal and human cells remains controversial. We investigated the effect of GA on cultured human cell lines of epidermoid origin-immortalized non-tumorigenic keratinocytes HaCaT and carcinoma A431 cells. We found that at a non-toxic dose, GA upregulated the expression of genes associated with the ER stress response-CHOP, sXBP1, GRP87 in both cell lines, and ATF4 predominantly in A431 cells. We also showed that GA was more effective in upregulating the production of ER stress marker GRP78, autophagy marker LC3B-II, and differentiation markers involucrin and filaggrin in A431 cells than in HaCaT. We conclude that GA induces mild ER stress in both cell lines, followed by the activation of differentiation via upregulation of autophagy. However, in comparison with immortalized keratinocytes HaCaT, GA is more effective in inducing differentiation of carcinoma A431 cells, probably due to the inherently lower differentiation status of A431 cells. The activation of differentiation in poorly differentiated and highly malignant A431 cells by GA may lower the level of malignancy of these cells and decrease their tumorigenic potential.
Collapse
Affiliation(s)
- Mariya Vildanova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
- Correspondence: or
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Laboratory of Regenerative Medicine, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia;
- Histology Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Aleena Saidova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| | - Victoria Konduktorova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| | - Galina Onishchenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| | - Elena Smirnova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 12, 119234 Moscow, Russia; (A.S.); (V.K.); (G.O.); (E.S.)
| |
Collapse
|
11
|
Wotherspoon D, Rogerson C, O’Shaughnessy RF. Perspective: Controlling Epidermal Terminal Differentiation with Transcriptional Bursting and RNA Bodies. J Dev Biol 2020; 8:E29. [PMID: 33291764 PMCID: PMC7768391 DOI: 10.3390/jdb8040029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022] Open
Abstract
The outer layer of the skin, the epidermis, is the principal barrier to the external environment: post-mitotic cells terminally differentiate to form a tough outer cornified layer of enucleate and flattened cells that confer the majority of skin barrier function. Nuclear degradation is required for correct cornified envelope formation. This process requires mRNA translation during the process of nuclear destruction. In this review and perspective, we address the biology of transcriptional bursting and the formation of ribonuclear particles in model organisms including mammals, and then examine the evidence that these phenomena occur as part of epidermal terminal differentiation.
Collapse
Affiliation(s)
- Duncan Wotherspoon
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| | | | - Ryan F.L. O’Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London E1 2AT, UK;
| |
Collapse
|
12
|
Kuang Y, Zorzi V, Buratto D, Ziraldo G, Mazzarda F, Peres C, Nardin C, Salvatore AM, Chiani F, Scavizzi F, Raspa M, Qiang M, Chu Y, Shi X, Li Y, Liu L, Shi Y, Zonta F, Yang G, Lerner RA, Mammano F. A potent antagonist antibody targeting connexin hemichannels alleviates Clouston syndrome symptoms in mutant mice. EBioMedicine 2020; 57:102825. [PMID: 32553574 PMCID: PMC7378960 DOI: 10.1016/j.ebiom.2020.102825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Numerous currently incurable human diseases have been causally linked to mutations in connexin (Cx) genes. In several instances, pathological mutations generate abnormally active Cx hemichannels, referred to also as "leaky" hemichannels. The goal of this study was to assay the in vivo efficacy of a potent antagonist antibody targeting Cx hemichannels. METHODS We employed the antibody to treat Cx30A88V/A88V adult mutant mice, the only available animal model of Clouston syndrome, a rare orphan disease caused by Cx30 p.A88V leaky hemichannels. To gain mechanistic insight into antibody action, we also performed patch clamp recordings, Ca2+ imaging and ATP release assay in vitro. FINDINGS Two weeks of antibody treatment sufficed to repress cell hyperproliferation in skin and reduce hypertrophic sebaceous glands (SGs) to wild type (wt) levels. These effects were obtained whether mutant mice were treated topically, by application of an antibody cream formulation, or systemically, by intraperitoneal antibody injection. Experiments with mouse primary keratinocytes and HaCaT cells revealed the antibody blocked Ca2+ influx and diminished ATP release through leaky Cx30 p.A88V hemichannels. INTERPRETATION Our results show anti-Cx antibody treatment was effective in vivo and sufficient to counteract the effects of pathological connexin expression in Cx30A88V/A88V mice. In vitro experiments suggest antibodies gained control over leaky hemichannels and contributed to restoring epidermal homeostasis. Therefore, regulating cell physiology by antibodies targeting the extracellular domain of Cxs may enforce an entirely new therapeutic strategy. These findings support the further development of antibodies as drugs to address unmet medical needs for Cx-related diseases. FUND: Fondazione Telethon, GGP19148; University of Padova, SID/BIRD187130; Consiglio Nazionale delle Ricerche, DSB.AD008.370.003\TERABIO-IBCN; National Science Foundation of China, 31770776; Science and Technology Commission of Shanghai Municipality, 16DZ1910200.
Collapse
Affiliation(s)
- Yuanyuan Kuang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Veronica Zorzi
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Buratto
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Gaia Ziraldo
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Institute of Otorhinolaryngology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavia Mazzarda
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Science, Roma3 University, 00146 Rome, Italy
| | - Chiara Peres
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | - Chiara Nardin
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy
| | | | - Francesco Chiani
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | | | - Marcello Raspa
- CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy
| | - Min Qiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Xiaojie Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China; Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031 Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yaru Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Richard A Lerner
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, U.S.A..
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; CNR Institute of Biochemistry and Cell Biology, 00015 Monterotondo, Italy; Department of Physics and Astronomy "G. Galilei", University of Padova, 35131 Padova, Italy.
| |
Collapse
|