1
|
Liu W, Li HM, Bai G. Construction of a novel mRNA-miRNA-lncRNA/circRNA triple subnetwork associated with immunity and aging in intervertebral disc degeneration. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1176-1195. [PMID: 38555595 DOI: 10.1080/15257770.2024.2334353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVE Intervertebral disk degeneration (IVDD) is one of the most common causes of low back pain. However, in the etiology of IVDD, the specific method by which nucleus pulposus (NP) cell senescence and the immune response induce disease is uncertain. METHODS Gene Expression Omnibus database was used to find differentially expressed genes (DEGs), differentially expressed miRNAs (DE miRNAs), differentially expressed lncRNAs (DE lncRNAs), and differentially expressed circRNAs (DE circRNAs). Functional enrichment analysis was performed through Enrichr database. Potential regulatory miRNAs, lncRNAs and circRNAs of mRNAs were predicted by ENCORI and circBank, respectively. RESULTS We identified 198 upregulated and 131 downregulated genes, 39 upregulated and 22 downregulated miRNAs, 2152 upregulated and 564 downregulated lncRNAs, and 352 upregulated and 279 downregulated circRNAs as DEGs, DE miRNAs, DE lncRNAs, DE circRNAs, respectively. Functional enrichment analysis revealed that they were significantly enriched in Toll-like receptor signaling route and the NF-kappa B signaling pathway. An mRNA-miRNA-lncRNA/circRNA network linked to the pathogenesis of NP cells in IVDD was constructed based on node degree and differential expression level. Eight immune-related DEGs (6 upregulated and 2 downregulated genes) and five aging-related DEGs (3 upregulated and 2 downregulated genes) were identified in the critical network. CONCLUSION We established a novel immune-related and aging-related triple regulatory network of mRNA-miRNA-lncRNA/circRNA ceRNA, among which all RNAs may be utilized as the pathogenesis biomarker of NP cells in IVDD.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Hui-Min Li
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| | - Guangchao Bai
- Department of Orthopedics, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, P R China
| |
Collapse
|
2
|
Jiang C, Liu Y, Zhao W, Yang Y, Ren Z, Wang X, Hao D, Du H, Yin S. microRNA-365 attenuated intervertebral disc degeneration through modulating nucleus pulposus cell apoptosis and extracellular matrix degradation by targeting EFNA3. J Cell Mol Med 2024; 28:e18054. [PMID: 38009813 PMCID: PMC10826450 DOI: 10.1111/jcmm.18054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
This present study is aimed to investigate the role of microRNA-365 (miR-365) in the development of intervertebral disc degeneration (IDD). Nucleus pulposus (NP) cells were transfected by miR-365 mimic and miR-365 inhibitor, respectively. Concomitantly, the transfection efficiency and the expression level of miRNA were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Meanwhile, NP cells apoptosis was measured through propidium iodide (PI)-AnnexinV-fluorescein isothiocyanate (FITC) apoptosis detection kit. Subsequently, immunofluorescence (IF) staining was performed to assess the expression of collagen II, aggrecan and matrix metalloproteinase 13 (MMP-13). In addition, bioinformatic prediction and Luciferase reporter assay were used to reveal the target gene of miR-365. Finally, we isolated the primary NP cells from rats and injected NP-miR-365 in rat IDD models. The results showed that overexpression of miR-365 could effectively inhibit NP cells apoptosis and MMP-13 expression and upregulate the expression of collagen II and aggrecan. Conversely, suppression of miR-365 enhanced NP cell apoptosis and elevated MMP-13 expression, but decreased the expression of collagen II and aggrecan. Moreover, the further data demonstrated that miR-365 mediated NP cell degradation through targeting ephrin-A3 (EFNA3). In addition, the cells apoptosis and catabolic markers were increased in NP cells when EFNA3 upregulated. More importantly, the vivo data supported that miR-365-NP cells injection ameliorated IDD in rats models. miR-365 could alleviate the development of IDD by regulating NP cell apoptosis and ECM degradation, which is likely mediated by targeting EFNA3. Therefore, miR-365 may be a promising therapeutic avenue for treatment IDD through EFNA3.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Youjun Liu
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weigong Zhao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yimin Yang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhiwei Ren
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaohui Wang
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Dingjun Hao
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Heng Du
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Si Yin
- Department of Orthopedic SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
3
|
Deng YJ, Wang XG, Li Z, Wang B, Li J, Ma J, Xue X, Tian X, Liu QC, Liu JY, Zhang Y, Yuan B. Comprehensive analysis of senescence-related genes and immune infiltration in intervertebral disc degeneration: a meta-data approach utilizing bulk and single-cell RNA sequencing data. Front Mol Biosci 2023; 10:1296782. [PMID: 38187091 PMCID: PMC10770860 DOI: 10.3389/fmolb.2023.1296782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objectives: This study aims to identify the key senescence genes and potential regulatory mechanisms that contribute to the etiology of intervertebral disc degeneration (IDD). Method: We analyzed GSE34095 and GSE70362 datasets, identifying key senescence-related differentially expressed genes (DEGs) in IDD using lasso regression. Risk scores classified patients into high- and low-risk groups. We compared pathways, functions, and immune infiltration between these groups. Diagnostic ability was assessed using ROC curves and a nomogram predicted IDD incidence. In single-cell dataset GSE165722, we evaluated expression of key senescence-related DEGs. Results: We identified 12 key senescence-related DEGs distinguishing high- and low-risk IDD patients. Enrichment analysis revealed cellular stress response, apoptotic signaling pathway, and protein kinase activation differences. Immune cell analysis showed elevated eosinophils in low-risk group and increased effector memory CD8 T, central memory CD4 T, myeloid-derived suppressor, natural killer, monocyte, Type 1 T helper, plasmacytoid dendritic, and natural killer T cells in high-risk group. A nomogram using AUC >0.75 genes (CXCL8, MAP4K4, MINK1, and TNIK) predicted IDD incidence with good diagnostic power. High senescence scores were observed in neutrophils. Conclusion: Our diagnostic model, based on key senescence-related DEGs and immune cell infiltration, offers new insights into IDD pathogenesis and immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bin Yuan
- Department of Spine Surgery, Xi’an Daxing Hospital, Yanan University, Xi’an, China
| |
Collapse
|
4
|
Guo C, Chen Y, Wang Y, Hao Y. Regulatory roles of noncoding RNAs in intervertebral disc degeneration as potential therapeutic targets (Review). Exp Ther Med 2022; 25:44. [PMID: 36569433 PMCID: PMC9764052 DOI: 10.3892/etm.2022.11743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of lower back pain, which is one of the primary factors that lead to disability and pose a serious economic burden. The key pathological processes involved are extracellular matrix degradation, autophagy, apoptosis, and inflammation of nucleus pulposus cells. Non-coding RNAs (ncRNAs), including microRNAs, long ncRNAs and circular RNAs, are key regulators of the aforementioned processes. ncRNAs are differentially expressed in tissues of the intervertebral disc between healthy individuals and patients and participate in the pathological progression of IDD via a complex pattern of gene regulation. However, the regulatory mechanisms of ncRNAs in IDD remain unclear. The present review summarizes the latest insights into the regulatory role of ncRNAs in IDD and sheds light on potentially novel therapeutic strategies for IDD that may be implemented in the future.
Collapse
Affiliation(s)
- Cunliang Guo
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yungang Chen
- Department of Orthopedics, First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Yuhe Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Yanke Hao
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Yanke Hao, Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 16369 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
5
|
Hao Y, Ren Z, Yu L, Zhu G, Zhang P, Zhu J, Cao S. p300 arrests intervertebral disc degeneration by regulating the FOXO3/Sirt1/Wnt/β-catenin axis. Aging Cell 2022; 21:e13677. [PMID: 35907249 PMCID: PMC9381896 DOI: 10.1111/acel.13677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023] Open
Abstract
The transcription factor p300 is reportedly involved in age-associated human diseases, including intervertebral disc degeneration (IDD). In this study, we investigate the potential role and pathophysiological mechanism of p300 in IDD. Clinical tissue samples were collected from patients with lumbar disc herniation (LDH), in which the expression of p300, forkhead box O3 (FOXO3), and sirtuin 1 (Sirt1) was determined. Nucleus pulposus cells (NPCs) isolated from clinical degenerative intervertebral disc (IVD) tissues were introduced with oe-p300, oe-FOXO3, Wnt/β-catenin agonist 1, C646 (p300/CBP inhibitor), or si-p300 to explore the functional role of p300 in IDD and to characterize the relationship between p300 and the FOXO3/Sirt1/Wnt/β-catenin pathway. Also, we established a rat IDD model by inducing needle puncture injuries in the caudal IVDs for further verification of p300 functional role. We found that p300 was downregulated in the clinical tissues and NPCs of IDD. Overexpression of p300 promoted the proliferation and autophagy of NPCs while inhibiting cell apoptosis, which was associated with FOXO3 upregulation. p300 could increase the expression of FOXO3 by binding to the Sirt1 promoter, and thus, contributed to inactivation of the Wnt/β-catenin pathway. In vivo results further displayed that p300 slowed down the progression of IDD by disrupting the Wnt/β-catenin pathway through the FOXO3/Sirt1 axis. Taken together, we suggest that p300 can act to suppress IDD via a FOXO3-dependent mechanism, highlighting a potential novel target for treatment of IDD.
Collapse
Affiliation(s)
- Yingjie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangduo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panke Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuyan Cao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Jiang X, Wu J, Guo C, Song W. Key LncRNAs Associated With Oxidative Stress Were Identified by GEO Database Data and Whole Blood Analysis of Intervertebral Disc Degeneration Patients. Front Genet 2022; 13:929843. [PMID: 35937989 PMCID: PMC9353269 DOI: 10.3389/fgene.2022.929843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Intervertebral disc degeneration (IDD) is a major cause of low back pain, but the onset and progression of IDD are unknown. Long non-coding RNA (lncRNA) has been validated to play a critical role in IDD, while an increasing number of studies have linked oxidative stress (OS) to the initiation and progression of IDD. We aim to investigate key lncRNAs in IDD through a comprehensive network of competing endogenous RNA (ceRNA) and to identify possible underlying mechanisms. Methods: We downloaded IDD-related gene expression data from the Gene Expression Omnibus (GEO) database and obtained differentially expressed-lncRNAs (DE-lncRNA), -microRNAs (DE-miRNA), and -messenger RNAs (DE-mRNA) by bioinformatics analysis. The OS-related lncRNA-miRNA-mRNA ceRNA interaction axis was constructed and key lncRNAs were identified based on ceRNA theory. We performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses on mRNAs regulated by lncRNAs in the ceRNA network. Single sample gene set enrichment analysis (ssGSEA) was used to reveal the immune landscape. Expression of key lncRNAs in IDD was assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: In this study, 111 DE-mRNAs, 20 DE-lncRNAs, and 502 DE-miRNAs were identified between IDD patients and controls, and 16 OS-related DE-lncRNAs were also identified. The resulting lncRNA-miRNA-mRNA network consisted of eight OS-related DE-lncRNA nodes, 24 DE-miRNA nodes, 70 DE-mRNA nodes, and 183 edges. Functional enrichment analysis suggested that the ceRNA network may be involved in regulating biological processes related to cytokine secretion, lipid, and angiogenesis. We also identified four key lncRNAs, namely lncRNA GNAS-AS1, lncRNA MIR100HG, lncRNA LINC01359, and lncRNA LUCAT1, which were also found to be significantly associated with immune cells. Conclusion: These results provide novel insights into the potential applications of OS-related lncRNAs in patients with IDD.
Collapse
|
7
|
Yu B, Zhu Z, Shen B, Lu J, Guo K, Zhao W, Wu D. MicroRNA-137 inhibits the inflammatory response and extracellular matrix degradation in lipopolysaccharide-stimulated human nucleus pulposus cells by targeting activin a receptor type I. Bioengineered 2022; 13:6396-6408. [PMID: 35236255 PMCID: PMC8973860 DOI: 10.1080/21655979.2022.2042987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study aimed to investigate the role played by microRNA (miR)-137 in intervertebral disc degeneration via targeting activin A receptor type I (ACVR1) and the underlying mechanism. Human nucleus pulposus cells were exposed to 10 ng/mL lipopolysaccharide (LPS) to establish an in vitro intervertebral disc degeneration model. ACVR1, extracellular matrix degradation-associated genes (aggrecan and collagen type II) and miR-137 levels were assessed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting assays. The MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay and flow cytometry were used to evaluate nucleus pulposus cell viability and apoptosis. Additionally, the association between miR-137 and ACVR1 was predicted and verified using bioinformatic software and dual-luciferase reporter assays. Furthermore, the secretion of inflammatory factors was analyzed via enzyme linked immunosorbent assay (ELISA). Our results confirmed that ACVR1 was upregulated in lipopolysaccharide-treated nucleus pulposus cells. Lipopolysaccharide suppressed cell viability, promoted apoptosis, enhanced the secretion of inflammatory factors, and reduced aggrecan and collagen type II expression. However, these results were reversed upon ACVR1 silencing. Our data revealed that ACVR1 directly targets miR-137 and is negatively regulated by miR-137 in nucleus pulposus cells. Additionally, the miR-137 mimic promoted cell growth, reduced cell apoptosis, reduced the secretion of inflammatory cytokines, and accelerated extracellular matrix accumulation in lipopolysaccharide-exposed nucleus pulposus cells. However, ACVR1 plasmid abolished the functions of the miR-137 mimic in lipopolysaccharide-exposed nucleus pulposus cells. Together, these findings indicate that miR-137 suppresses the inflammatory response and extracellular matrix degradation in lipopolysaccharide-treated nucleus pulposus cells by targeting ACVR1.
Collapse
Affiliation(s)
- Bin Yu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ziqi Zhu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Beiduo Shen
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weidong Zhao
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Yang Y, Liu P, Teng R, Liu F, Zhang C, Lu X, Ding Y. Integrative bioinformatics analysis of potential therapeutic targets and immune infiltration characteristics in dilated cardiomyopathy. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:348. [PMID: 35433958 PMCID: PMC9011224 DOI: 10.21037/atm-22-732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 11/15/2022]
Abstract
Background Dilated cardiomyopathy (DCM) is currently the major cause of systolic heart failure. This study explored potential therapeutic targets and investigated the role of immune cell infiltration in DCM. Methods Three DCM datasets (GSE3585, GSE9800, and GSE84796) from the Gene Expression Omnibus (GEO) database were merged into an integrated dataset, and batch effects were removed. Differentially expressed genes (DEGs) were screened and the associations between gene co-expression modules and clinical traits were assessed by weighted gene co-expression network analysis (WGCNA) in R software. Any DEGs from the integrated dataset overlapped with the significant module genes were defined as common genes (CGs). Enrichment analysis of the CGs was performed. The protein-protein interaction (PPI) network of the CGs was visualized and the hub gene was identified by using Cytoscape 3.8.2 software. The miRNA-transcription factor-mRNA (miRNA-TF-mRNA) network was constructed using Cytoscape to unveil the regulatory relationships in DCM. Finally, the CIBERSORT method (https://cibersort.stanford.edu/) was used to investigate immune cell infiltration in DCM. Results A total of 53 DEGs were identified, and 5 gene co-expression modules were detected by WGCNA of the DCM and control group samples of cardiac tissue. Genes such as FRZB, ASPN, and PHLDA1 were significantly upregulated, whereas IDH2 and ENDOG were significantly downregulated. Functional enrichment analysis showed that CGs were mainly enriched in the extracellular matrix (ECM) signaling pathway. ASPN was the hub gene in the PPI network. The miRNA-TF-mRNA network revealed that FRZB and ASPN were targeted by paired related homeobox 2 (Prrx2). We also found that miR-129-5p could regulate ASPN, PHLDA1, and IDH2 simultaneously. The immune infiltration analysis revealed higher levels of M1 macrophages in DCM samples than in the control samples. Conclusions In conclusion, we speculate that miR-129-5p might target ASPN in regulating DCM via the ECM signaling pathway. Macrophage infiltration may be involved in ECM remodeling and eventually lead to DCM.
Collapse
Affiliation(s)
- Yujiao Yang
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ping Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Ruoling Teng
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Fenfen Liu
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cuiping Zhang
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Ding
- Department of Geriatrics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Chen S, Shi G, Zeng J, Li PH, Peng Y, Ding Z, Cao HQ, Zheng R, Wang W. MiR-1260b protects against LPS-induced degenerative changes in nucleus pulposus cells through targeting TCF7L2. Hum Cell 2022; 35:779-791. [PMID: 35165858 DOI: 10.1007/s13577-021-00655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/26/2021] [Indexed: 11/04/2022]
Abstract
Nucleus pulposus (NP) cells play a critical role in maintaining intervertebral disc integrity through producing the components of extracellular matrix (ECM). NP cell dysfunction, including senescence and hyper-apoptosis, has been regarded as critical events during intervertebral disc degeneration development. In the present study, we found that Transcription Factor 7-Like 2 (TCF7L2) was overexpressed within degenerative intervertebral disc tissue samples, and TCF7L2 silencing improved lipopolysaccharide (LPS)-induced repression on NP cell proliferation, ECM synthesis, and LPS-induced NP cell senescence. miR-1260b directly targeted TCF7L2 and inhibited TCF7L2 expression. miR-1260b overexpression improved LPS-induced degenerative changes in NP cells; more importantly, TCF7L2 overexpression significantly reversed the effects of miR-1260b overexpression on LPS-stimulated degenerative changes within NP cells. For the first time, we demonstrated the function of the miR-1260b/TCF7L2 axis on the phenotypic maintenance of chondrocyte-like NP cells and ECM synthesis by NP cells under LPS stimulation.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Guixia Shi
- Department of Internal Medicine, Changsha Health Vocational Collage, Changsha, 410100, Hunan, China
| | - Jin Zeng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ping Huang Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yi Peng
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Zhiyu Ding
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Hong Qing Cao
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ruping Zheng
- School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, China
| | - Weiguo Wang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
MiR-98 Protects Nucleus Pulposus Cells against Apoptosis by Targeting TRAIL in Cervical Intervertebral Disc Degeneration. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6187272. [PMID: 35126933 PMCID: PMC8808200 DOI: 10.1155/2022/6187272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
The excessive apoptosis of nucleus pulposus (NP) cells is a major risk factor in the progress of cervical intervertebral disc degeneration (IVDD). In this study, we investigated the impact of miR-98 on apoptosis of NP cells and the potential molecular mechanisms. Lipopolysaccharide (LPS) was used to establish an NP cell IVDD model. The sponging effect of miR-98 on TRAIL 3′UTR was predicted by ENCORI and assessed by the dual-luciferase reporter gene system. The expression levels of miR-98, TRAIL, and TRAIL pathway-related genes were tested by qRT-PCR, Western blot, and immunofluorescence analysis. Cell apoptosis was analyzed by Hoechst 33258 staining and flow cytometry. Cell viability was analyzed by MTT assay. It was found that the expression level of miR-98 was downregulated, while the level of TRAIL was upregulated in IVDD tissues, and their levels were negatively and positively associated with the clinical MRI grade, respectively. The LPS treatment resulted in a significant decrease of the miR-98 expression level and an increase of the TRAIL expression level in NP cells. miR-98 reduced NP cell apoptosis under LPS treatment in vitro. miR-98 directly targeted TRAIL. Moreover, the mRNA and protein levels of DR5, FADD, cleaved caspase8, cleaved caspase3, and cleaved PARP were downregulated by miR-98 overexpression. Overexpression of TRAIL partially reversed the suppressive roles of miR-98 on cell apoptosis and activation of the TRAIL pathway. We concluded that miR-98 inhibited apoptosis of NP cells by inactivating the TRAIL pathway via targeting TRAIL in IVDD NP cells. These results indicated that miR-98 might be a therapeutic target for IVDD.
Collapse
|
11
|
Wang H, Li F, Ban W, Zhang J, Zhang G. Human Bone Marrow Mesenchymal Stromal Cell-Derived Extracellular Vesicles Promote Proliferation of Degenerated Nucleus Pulposus Cells and the Synthesis of Extracellular Matrix Through the SOX4/Wnt/β-Catenin Axis. Front Physiol 2021; 12:723220. [PMID: 34777000 PMCID: PMC8581610 DOI: 10.3389/fphys.2021.723220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Objective: Intervertebral disk degeneration (IDD) is a major cause of pain in the back, neck, and radiculus. Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are therapeutic in musculoskeletal degenerative diseases such as IDD. This study explored the effect and functional mechanism of human bone MSCs (hBMSCs)-derived EVs in proliferation and apoptosis of degenerated nucleus pulposus cells (DNPCs) and extracellular matrix (ECM) synthesis. Methods: Extracellular vesicles were isolated from hBMSCs and identified. DNPCs were induced by TNF-α. EVs were incubated with DNPCs for 24h. Internalization of EVs by DNPCs, DNPCs proliferation, apoptosis, and expressions of ECM synthetic genes, degrading genes and miR-129-5p were assessed. Downstream target genes of miR-129-5p were predicted. Target relation between miR-129-5p and SRY-box transcription factor 4 (SOX4) was verified. DNPCs proliferation, apoptosis, and ECM synthesis were measured after treatment with EVs and miR-129-5p inhibitor or SOX4 overexpression. Expressions of SOX4 and Wnt/β-catenin pathway-related proteins were determined. Results: hBMSC-EVs promoted DNPCs proliferation, inhibited apoptosis, increased expressions of ECM synthetic genes, and reduced expressions of ECM degrading genes. hBMSC-EVs carried miR-129-5p into DNPCs. Silencing miR-129-5p in EVs partially inverted the effect of EVs on DNPCs proliferation and ECM synthesis. miR-129-5p targeted SOX4. SOX4 overexpression annulled the effect of EVs on DNPCs proliferation and ECM synthesis. Expressions of Wnt1 and β-catenin were decreased in EVs-treated DNPCs, while silencing miR-129-5p in EVs promoted expressions of Wnt1 and β-catenin. Conclusion: hBMSC-EVs promoted DNPCs proliferation and ECM synthesis by carrying miR-129-5p into DNPCs to target SOX4 and deactivating the Wnt/β-catenin axis.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fei Li
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wenrui Ban
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guiqi Zhang
- Department of Spinal Surgery, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
12
|
Cao S, Liu H, Fan J, Yang K, Yang B, Wang J, Li J, Meng L, Li H. An Oxidative Stress-Related Gene Pair ( CCNB1/ PKD1), Competitive Endogenous RNAs, and Immune-Infiltration Patterns Potentially Regulate Intervertebral Disc Degeneration Development. Front Immunol 2021; 12:765382. [PMID: 34858418 PMCID: PMC8630707 DOI: 10.3389/fimmu.2021.765382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidative stress (OS) irreversibly affects the pathogenesis of intervertebral disc degeneration (IDD). Certain non-coding RNAs act as competitive endogenous RNAs (ceRNAs) that regulate IDD progression. Analyzing the signatures of oxidative stress-related gene (OSRG) pairs and regulatory ceRNA mechanisms and immune-infiltration patterns associated with IDD may enable researchers to distinguish IDD and reveal the underlying mechanisms. In this study, OSRGs were downloaded and identified using the Gene Expression Omnibus database. Functional-enrichment analysis revealed the involvement of oxidative stress-related pathways and processes, and a ceRNA network was generated. Differentially expressed oxidative stress-related genes (De-OSRGs) were used to construct De-OSRG pairs, which were screened, and candidate De-OSRG pairs were identified. Immune cell-related gene pairs were selected via immune-infiltration analysis. A potential long non-coding RNA-microRNA-mRNA axis was determined, and clinical values were assessed. Eighteen De-OSRGs were identified that were primarily related to intricate signal-transduction pathways, apoptosis-related biological processes, and multiple kinase-related molecular functions. A ceRNA network consisting of 653 long non-coding RNA-microRNA links and 42 mRNA-miRNA links was constructed. Three candidate De-OSRG pairs were screened out from 13 De-OSRG pairs. The abundances of resting memory CD4+ T cells, resting dendritic cells, and CD8+ T cells differed between the control and IDD groups. CD8+ T cell infiltration correlated negatively with cyclin B1 (CCNB1) expression and positively with protein kinase D1 (PKD1) expression. CCNB1-PKD1 was the only pair that was differentially expressed in IDD, was correlated with CD8+ T cells, and displayed better predictive accuracy compared to individual genes. The PKD1-miR-20b-5p-AP000797 and CCNB1-miR-212-3p-AC079834 axes may regulate IDD. Our findings indicate that the OSRG pair CCNB1-PKD1, which regulates oxidative stress during IDD development, is a robust signature for identifying IDD. This OSRG pair and increased infiltration of CD8+ T cells, which play important roles in IDD, were functionally associated. Thus, the OSRG pair CCNB1-PKD1 is promising target for treating IDD.
Collapse
Affiliation(s)
- Shuai Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Yang
- Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baohui Yang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liesu Meng
- National & Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
13
|
Zhou M, He SJ, Liu W, Yang MJ, Hou ZY, Meng Q, Qian ZL. EZH2 upregulates the expression of MAPK1 to promote intervertebral disc degeneration via suppression of miR-129-5p. J Gene Med 2021; 24:e3395. [PMID: 34668273 DOI: 10.1002/jgm.3395] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/07/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study was designed to verify whether enhancer of zeste homolog 2 (EZH2) affects intervertebral disc degeneration (IVDD) development through regulation of microRNA (miR)-129-5p/MAPK1. METHODS Initially, we collected lumbar nucleus pulposus (NP) tissue samples from patients with juvenile idiopathic scoliosis (n = 14) and IVDD (n = 34). We measured the expression of related genes in clinical IVDD tissues and a lipopolysaccharide (LPS)-induced NP cell model. After loss- and gain- function assays, NP cell proliferation and senescence were examined. The targeting relationship between miR-129-5p and MAPK1 was explored by dual luciferase reporter gene and RIP assays. The enrichment of EZH2 and H3K27me3 in miR-129-5p promoter was verified by ChIP. Finally, an IVDD rat model was established to test the effects of transduction with lentiviral vector carrying miR-129-5p agomir and/or oe-EZH2 in vivo. RESULTS miR-129-5p was underexpressed, and EZH2 and MAPK1 levels are overexpressed in lumbar nucleus pulposus from human IVDD patients and in LPS-induced NP cells. miR-129-5p overexpression or silencing of MAPK1 promoted proliferation of NP cells, while inhibiting their senescence. EZH2 inhibited miR-129-5p through H3K27me3 modification in the miR-129-5p promoter. miR-129-5p could targeted the downregulation of MAPK1 expression. EZH2 overexpression increased the release of inflammatory factors and cell senescence factors, which was reversed by miR-129-5p agomir in vivo. CONCLUSIONS Taken together, EZH2 inhibits miR-129-5p through H3K27me3 modification, which upregulates MAPK1, thereby promoting the development of IVDD.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China.,Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Shuang-Jun He
- Department of Orthopedic Surgery, Affiliated Danyang Hospital of Nantong University, The People's Hospital of Danyang, Danyang, Jiangsu, P. R. China
| | - Wei Liu
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Mao-Jie Yang
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Zhen-Yang Hou
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Qian Meng
- Department of Orthopedic Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, P. R. China
| | - Zhong-Lai Qian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
14
|
Cui S, Zhang L. microRNA-129-5p shuttled by mesenchymal stem cell-derived extracellular vesicles alleviates intervertebral disc degeneration via blockade of LRG1-mediated p38 MAPK activation. J Tissue Eng 2021; 12:20417314211021679. [PMID: 34377430 PMCID: PMC8330460 DOI: 10.1177/20417314211021679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have been reported to deliver exogenous microRNAs (miRNAs or miRs) to reduce the progression of intervertebral disc degeneration (IDD). The purpose of the current study was to investigate the therapeutic potential of MSC-derived EVs delivering miR-129-5p in IDD. First, miR-129-5p expression levels were quantified in nucleus pulposus (NP) tissues of IDD patients. An IL-1β-induced NP cell model with IDD was then established, and co-cultured with EVs derived from MSCs that had been transfected with miR-129-5p mimic or inhibitor to elucidate the effects of miR-129-5p on cell viability, apoptosis, and ECM degradation. In addition, RAW264.7 cells were treated with the conditioned medium (CM) of NP cells. Next, the expression patterns of polarization markers and those of inflammatory factors in macrophages were detected using flow cytometry and ELISA, respectively. Lastly, rat models of IDD were established to validate the in vitro findings. It was found that miR-129-5p was poorly-expressed in NP tissues following IDD. Delivery of miR-129-5p to NP cells by MSC-derived EVs brought about a decrease in NP cell apoptosis, ECM degradation and M1 polarization of macrophages. Moreover, miR-129-5p directly-targeted LRG1, which subsequently promoted the activation of p38 MAPK signaling pathway, thus polarizing macrophages toward the M1 phenotype. Furthermore, MSC-derived EVs transferring miR-129-5p relieved IDD via inhibition of the LRG1/p38 MAPK signaling in vivo. Altogether, our findings indicated that MSC-derived EVs carrying miR-129-5p confer protection against IDD by targeting LRG1 and suppressing the p38 MAPK signaling pathway, offering a novel theranostic marker in IDD.
Collapse
Affiliation(s)
- Shaoqian Cui
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| | - Lei Zhang
- Department of Spine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P.R. China
| |
Collapse
|
15
|
Deng B, Tang X, Wang Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp Ther Med 2021; 22:918. [PMID: 34335879 PMCID: PMC8290460 DOI: 10.3892/etm.2021.10350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non-oncological diseases. These small non-coding RNAs can block translation, resulting in a low expression level of target genes. miR-129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR-129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non-cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR-129 in different diseases. The present review includes an updated summary of the mechanisms of the miR-129 family in oncological and non-oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR-129 in non-cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
Collapse
Affiliation(s)
- Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
16
|
Gao Q, Chang N, Liu D. In vitro and in vivo assessment of the protective effect of sufentanil in acute lung injury. J Int Med Res 2021; 49:300060520986351. [PMID: 33535837 PMCID: PMC7869068 DOI: 10.1177/0300060520986351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objectives To investigate the mechanisms underlying the protective effect of sufentanil
against acute lung injury (ALI). Material and Methods Rats were administered lipopolysaccharide (LPS) by endotracheal instillation
to establish a model of ALI. LPS was used to stimulate BEAS-2B cells. The
targets and promoter activities of IκB were assessed using a luciferase
reporter assay. Apoptosis of BEAS-2B cells was evaluated by terminal
deoxynucleotidyl transferase dUTP nick end labeling. Results Sufentanil treatment markedly reduced pathological changes in lung tissue,
pulmonary edema and secretion of inflammatory factors associated with ALI
in vivo and in vitro. In addition,
sufentanil suppressed apoptosis induced by LPS and activated NF-κB both
in vivo and in vitro. Furthermore,
upregulation of high mobility group box protein 1 (HMGB1) protein levels and
downregulation of miR-129-5p levels were observed in vivo
and in vitro following sufentanil treatment. miR-129-5p
targeted the 3ʹ untranslated region and its inhibition decreased promoter
activities of IκB-α. miR-129-5p inhibition significantly weakened the
protective effect of sufentanil on LPS-treated BEAS-2B cells. Conclusion Sufentanil regulated the miR-129-5p/HMGB1 axis to enhance IκB-α expression,
suggesting that sufentanil represents a candidate drug for ALI protection
and providing avenues for clinical treatment.
Collapse
Affiliation(s)
- Qi Gao
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Ningqing Chang
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Donglian Liu
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
17
|
Lin F, Zhang S, Wang T, Wang X, Wang Y, Wang P, Li J, Wang Z. Protective effects of ginsenoside Rh1 on intervertebral disc degeneration through inhibition of nuclear factor kappa-B signaling pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_579_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Zhang XB, Hu YC, Cheng P, Zhou HY, Chen XY, Wu D, Zhang RH, Yu DC, Gao XD, Shi JT, Zhang K, Li SL, Song PJ, Wang KP. Targeted therapy for intervertebral disc degeneration: inhibiting apoptosis is a promising treatment strategy. Int J Med Sci 2021; 18:2799-2813. [PMID: 34220308 PMCID: PMC8241771 DOI: 10.7150/ijms.59171] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is a multifactorial pathological process associated with low back pain (LBP). The pathogenesis is complicated, and the main pathological changes are IVD cell apoptosis and extracellular matrix (ECM) degradation. Apoptotic cell loss leads to ECM degradation, which plays an essential role in IDD pathogenesis. Apoptosis regulation may be a potential attractive therapeutic strategy for IDD. Previous studies have shown that IVD cell apoptosis is mainly induced by the death receptor pathway, mitochondrial pathway, and endoplasmic reticulum stress (ERS) pathway. This article mainly summarizes the factors that induce IDD and apoptosis, the relationship between the three apoptotic pathways and IDD, and potential therapeutic strategies. Preliminary animal and cell experiments show that targeting apoptotic pathway genes or drug inhibition can effectively inhibit IVD cell apoptosis and slow IDD progression. Targeted apoptotic pathway inhibition may be an effective strategy to alleviate IDD at the gene level. This manuscript provides new insights and ideas for IDD therapy.
Collapse
Affiliation(s)
- Xiao-Bo Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Department of Orthopedics, Honghui Hospital, Xi'an, Shanxi, 710000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Yi-Cun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng Cheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Hai-Yu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| | - Xiang-Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ding Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Rui-Hao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - De-Chen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Xi-Dan Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Jin-Tao Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Shao-Long Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Peng-Jie Song
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, Gansu 730000, PR China
| | - Ke-Ping Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, PR China.,Xigu District People's Hospital, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
19
|
Lan T, Shiyu-Hu, Shen Z, Yan B, Chen J. New insights into the interplay between miRNAs and autophagy in the aging of intervertebral discs. Ageing Res Rev 2021; 65:101227. [PMID: 33238206 DOI: 10.1016/j.arr.2020.101227] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/27/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
Intervertebral disc degeneration (IDD) has been widely known as a main contributor to low back pain which has a negative socioeconomic impact worldwide. However, the underlying mechanism remains unclear. MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate gene expression and serve key roles in the ageing process of intervertebral disc. Autophagy is an evolutionarily conserved process that maintains cellular homeostasis through recycling of nutrients and degradation of damaged or aged cytoplasmic organelles. Autophagy has been proposed as a "double-edged sword" and autophagy dysfunction of IVD cells is considered as a crucial reason of IDD. A rapidly growing number of recent studies demonstrate that both miRNAs and autophagy play important roles in the progression of IDD. Furthermore, accumulated research has indicated that miRNAs target autophagy-related genes and influence the onset and development of IDD. Hence, this review focuses mainly on the current findings regarding the correlations between miRNA, autophagy, and IDD and provides new insights into the role of miRNA-autophagy pathway involved in IDD pathophysiology.
Collapse
|
20
|
Autophagy-Related Signature for Head and Neck Squamous Cell Carcinoma. DISEASE MARKERS 2020; 2020:8899337. [PMID: 33133307 PMCID: PMC7591969 DOI: 10.1155/2020/8899337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/19/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in the world, with low survival and poor quality of life. Autophagy-associated genes (ATGs) have been reported to be involved in the initiation and progression of malignancies. Here, we aimed to investigate the association between autophagy-associated genes and the outcomes in HNSCC patients. Methods We obtained ATGs with prognostic values by analyzing the datasets from The Cancer Genome Atlas (TCGA) and Human Autophagy Database (HADb). The enrichment functions of autophagy differential genes were analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The Kaplan-Meier method was applied to the survival curve analysis. A prognostic autophagy-related gene signature was established, and its independence was verified. Results We acquired a total of 529 samples and 232 ATGs; further, we identified 45 genes associated with prognosis and built a prognosis autophagy signature based on risk score of 15 genes. Patients were divided into two groups based on risk scores. The Kaplan-Meier curve illustrated that the survival rate of the high-risk group was significantly lower than that of the low-risk group in both the training group and validation group. The ROC curve revealed that the risk score had the highest AUC value in the 3rd and 5th years, reaching 0.703 and 0.724, which are higher than other risk factors such as gender, age, and TNM stage. The nomogram further confirmed its weight in the prognosis of HNSCC patients. Through KEGG and GO enrichment analyses, we observed that ATGs were involved in the tumorigenesis and invasion of tumor by various mediating pathways. We gained 3 hub genes (MAP1LC3B, FADD, and LAMP1) and further analyzed the survival curves, mutations, differential expressions, and their roles in tumors on the online websites. Conclusion We identified a novel autophagy-related signature that may provide promising biomarker genes for the treatment and prognosis of HNSCC. We need to validate its prognostic value by applying it to the clinic.
Collapse
|