1
|
Chuang YT, Yen CY, Tang JY, Wu KC, Chang FR, Tsai YH, Chien TM, Chang HW. Marine anticancer drugs in modulating miRNAs and antioxidant signaling. Chem Biol Interact 2024; 399:111142. [PMID: 39019423 DOI: 10.1016/j.cbi.2024.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Several marine drugs exert anticancer effects by inducing oxidative stress, which becomes overloaded and kills cancer cells when redox homeostasis is imbalanced. The downregulation of antioxidant signaling induces oxidative stress, while its upregulation attenuates oxidative stress. Marine drugs have miRNA-modulating effects against cancer cells. However, the potential antioxidant targets of such drugs have been rarely explored. This review aims to categorize the marine-drug-modulated miRNAs that downregulate their antioxidant targets, causing oxidative stress in anticancer treatments. We also categorize the downregulation of oxidative-stress-inducing miRNAs in antioxidant protection among non-cancer cells. We summarize the putative antioxidant targets of miRNA-modulating marine drugs by introducing a bioinformatics tool (miRDB). Finally, the marine drugs affecting antioxidant targets are surveyed. In this way, the connections between marine drugs and their modulating miRNA and antioxidant targets are innovatively categorized to provide a precise network for exploring their potential anticancer functions and protective effects on non-cancer cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, 900392, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, 907101, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
2
|
Lin C, He X, Chen X, Liu L, Guan H, Xiao H, Li Y. miR-1275 Inhibits Human Omental Adipose-Derived Stem Cells Differentiation Toward the Beige Phenotype via PRDM16. Stem Cells Dev 2022; 31:799-809. [PMID: 36128801 DOI: 10.1089/scd.2022.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Beige adipocytes have recently attracted attention for their potential as new therapeutic targets in the management of obesity and related metabolic disorders. MicroRNAs (miRNAs) have been reported as transcriptional regulators or biomarkers of brown and beige adipogenesis. Nevertheless, the effects of miRNAs involved in beige differentiation of human visceral adipocytes remain to be investigated. In this study, microarray screening showed that miR-1275 was significantly decreased during the differentiation of beige adipocytes induced by human omental adipose-derived stem cells (hASCs). Overexpression of miR-1275 suppressed the "brown-like" differentiation of hASCs by inhibiting the key transcriptional factor PR domain containing 16 (PRDM16) without affecting the proliferation. Adipogenesis and mitochondrial biogenesis of beige adipocytes derived from hASCs were impaired by miR-1275 overexpression. The regulatory effect of miR-1275 was determined by direct binding to the 3'-untranslated region of PRDM16, which was demonstrated by a dual-luciferase assay. Taken together, this study identified miR-1275 as a negative regulator of beige cell development in hASCs by inhibiting PRDM16. Thus, miR-1275 might be a potential target in the management of visceral obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Chenhong Lin
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xueying Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Malendowicz LK, Rucinski M. Neuromedins NMU and NMS: An Updated Overview of Their Functions. Front Endocrinol (Lausanne) 2021; 12:713961. [PMID: 34276571 PMCID: PMC8283259 DOI: 10.3389/fendo.2021.713961] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
More than 35 years have passed since the identification of neuromedin U (NMU). Dozens of publications have been devoted to its physiological role in the organism, which have provided insight into its occurrence in the body, its synthesis and mechanism of action at the cellular level. Two G protein-coupled receptors (GPCRs) have been identified, with NMUR1 distributed mainly peripherally and NMUR2 predominantly centrally. Recognition of the role of NMU in the control of energy homeostasis of the body has greatly increased interest in this neuromedin. In 2005 a second, structurally related peptide, neuromedin S (NMS) was identified. The expression of NMS is more restricted, it is predominantly found in the central nervous system. In recent years, further peptides related to NMU and NMS have been identified. These are neuromedin U precursor related peptide (NURP) and neuromedin S precursor related peptide (NSRP), which also exert biological effects without acting via NMUR1, or NMUR2. This observation suggests the presence of another, as yet unrecognized receptor. Another unresolved issue within the NMU/NMS system is the differences in the effects of various NMU isoforms on diverse cell lines. It seems that development of highly specific NMUR1 and NMUR2 receptor antagonists would allow for a more detailed understanding of the mechanisms of action of NMU/NMS and related peptides in the body. They could form the basis for attempts to use such compounds in the treatment of disorders, for example, metabolic disorders, circadian rhythm, stress, etc.
Collapse
|