1
|
Mirea CS, Schenker M, Petre-Mandache B, Cucu MG, Camen GC, Vîlcea ID, Albu BC, Obleagă CV, Ciorbagiu MC, Streață I, Pleșea RM, Riza AL, Burada F. GAS5 rs145204276 Ins/Del Polymorphism Is Associated with CRC Susceptibility in a Romanian Population. Int J Mol Sci 2025; 26:3078. [PMID: 40243746 PMCID: PMC11988689 DOI: 10.3390/ijms26073078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality, influenced by both genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) such as GAS5 and CASC8 have been implicated in cancer susceptibility. This study aimed to assess the association of GAS5 rs145204276 ins/del and CASC8 rs10505477 A>G polymorphisms with CRC risk in a Romanian population. A case-control study was conducted, including 156 CRC patients and 195 healthy controls. Genotyping for GAS5 and CASC8 polymorphisms was performed using real-time PCR, and the association with CRC risk was evaluated using logistic regression to calculate odds ratios (OR) and 95% confidence intervals (CI). The carriers of GAS5 rs145204276 del allele was significantly associated with increased CRC risk (OR: 2.13, 95% CI: 1.24-3.63, p = 0.005) in a dominant model. In the subgroup analysis, the association of GAS5 rs145204276 ins/del polymorphism was restricted to distal colon cancer cases (OR: 2.98, 95% CI: 1.57-5.66, p = 0.001), advanced tumor stages (III + IV) (OR: 2.54, 95% CI: 1.31-4.91, p = 0.007), and poorly differentiated tumors (G3) (OR: 3.98, 95% CI: 1.49-10.59, p = 0.009). No significant correlation was found for the CASC8 rs10505477 A>G polymorphism. GAS5 rs145204276 polymorphism may influence CRC susceptibility, particularly in distal tumors and advanced stages. However, CASC8 rs10505477 polymorphism showed no association with CRC risk in this Romanian cohort.
Collapse
Affiliation(s)
- Cecil Sorin Mirea
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Michael Schenker
- Department of Oncology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bianca Petre-Mandache
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihai-Gabriel Cucu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Georgiana-Cristiana Camen
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Ionică Daniel Vîlcea
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Bogdan Cristian Albu
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cosmin Vasile Obleagă
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Mihai Călin Ciorbagiu
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.S.M.); (I.D.V.); (C.V.O.); (M.C.C.)
- Department of Surgery, Emergency Clinical County Hospital, 200642 Craiova, Romania;
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Răzvan Mihail Pleșea
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Florin Burada
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (I.S.); (R.M.P.); (A.-L.R.); (F.B.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| |
Collapse
|
2
|
Flores-García LC, García-Castillo V, Pérez-Toledo E, Trujano-Camacho S, Millán-Catalán O, Pérez-Yepez EA, Coronel-Hernández J, Rodríguez-Dorantes M, Jacobo-Herrera N, Pérez-Plasencia C. HOTAIR Participation in Glycolysis and Glutaminolysis Through Lactate and Glutamate Production in Colorectal Cancer. Cells 2025; 14:388. [PMID: 40072116 PMCID: PMC11898799 DOI: 10.3390/cells14050388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis. Our results demonstrated the regulatory effect of HOTAIR on the expression of glycolysis and glutaminolysis enzymes in colorectal cancer cells. Specifically, through the overexpression and inhibition of HOTAIR, we determined its influence on the expression of the enzymes PFKFB4, PGK1, LDHA, SLC1A5, GLUD1, and GOT1, which had a direct impact on lactate and glutamate production. These findings indicate that HOTAIR plays a significant role in producing "oncometabolites" essential to maintaining the bioenergetics and biomass necessary for tumor cell survival by regulating glycolysis and glutaminolysis.
Collapse
Affiliation(s)
- Laura Cecilia Flores-García
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Verónica García-Castillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Eduardo Pérez-Toledo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
| | - Samuel Trujano-Camacho
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
- Experimental Biology PhD Program, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Oliver Millán-Catalán
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Eloy Andrés Pérez-Yepez
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | - Jossimar Coronel-Hernández
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| | | | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Medicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City 14080, Mexico;
| | - Carlos Pérez-Plasencia
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico; (L.C.F.-G.); (V.G.-C.); (E.P.-T.)
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Mexico City 14080, Mexico; (S.T.-C.); (O.M.-C.); (E.A.P.-Y.); (J.C.-H.)
| |
Collapse
|
3
|
Taha SR, Karimi M, Mahdavi B, Yousefi Tehrani M, Bemani A, Kabirian S, Mohammadi J, Jabbari S, Hushmand M, Mokhtar A, Pourhanifeh MH. Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy. Epigenetics Chromatin 2025; 18:3. [PMID: 39810224 PMCID: PMC11734566 DOI: 10.1186/s13072-024-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD). OBJECTIVE This review aims to explore the relationship between ncRNAs and PCD in CRC, focusing on how ncRNAs influence cancer cell survival, proliferation, and treatment resistance. METHODS A comprehensive literature analysis was conducted to examine recent findings on the role of ncRNAs in modulating various PCD mechanisms, including apoptosis, autophagy, necroptosis, and pyroptosis, and their impact on CRC development and therapeutic response. RESULTS ncRNAs were found to significantly regulate PCD pathways, impacting tumor growth, metastasis, and treatment sensitivity in CRC. Their influence on these pathways highlights the potential of ncRNAs as biomarkers for early CRC detection and as targets for innovative therapeutic interventions. CONCLUSION Understanding the involvement of ncRNAs in PCD regulation offers new insights into CRC biology. The targeted modulation of ncRNA-PCD interactions presents promising avenues for personalized cancer treatment, which may improve patient outcomes by enhancing therapeutic effectiveness and reducing resistance.
Collapse
Affiliation(s)
- Seyed Reza Taha
- Department of Pathology and Immunology, Washington University School of Medicine, St. LouisWashington, MO, USA
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Karimi
- Faculty of Medicine, Bogomolets National Medical University (NMU), Kiev, Ukraine.
| | - Bahar Mahdavi
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Ali Bemani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahriar Kabirian
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javad Mohammadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sina Jabbari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Meysam Hushmand
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mokhtar
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- PAKAN Institute, Tehran, Iran.
| |
Collapse
|
4
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
5
|
Lin Y, Zhao W, Pu R, Lv Z, Xie H, Li Y, Zhang Z. Long non‑coding RNAs as diagnostic and prognostic biomarkers for colorectal cancer (Review). Oncol Lett 2024; 28:486. [PMID: 39185489 PMCID: PMC11342420 DOI: 10.3892/ol.2024.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the 3rd most common cancer globally and is the 2nd leading cause of cancer-related death. Owing to the lack of specific early symptoms and the limitations of existing early diagnostic methods, most patients with CRC are diagnosed at advanced stages. To overcome these challenges, researchers have increasingly focused on molecular biomarkers, with particular interest in long non-coding RNAs (lncRNAs). These non-protein-coding RNAs, which exceed 200 nucleotides in length, play critical roles in the development and progression of CRC. The stability and detectability of lncRNAs in the circulatory system make them promising candidate biomarkers. The analysis of circulating lncRNAs in peripheral blood represents a potential option for minimally invasive diagnostic tests based on liquid biopsy samples. The present review aimed to evaluate the efficacy of lncRNAs with altered expression levels in peripheral blood as diagnostic markers for CRC. Additionally, the clinical significance of lncRNAs as prognostic markers for this disease were summarized.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ruonan Pu
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| | - Ying Li
- Department of Ultrasonography, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361009, P.R. China
| |
Collapse
|
6
|
Qi Y, Zhao P. Influence of H19 polymorphisms on breast cancer: risk assessment and prognostic implications via LincRNA H19/miR-675 and downstream pathways. Front Oncol 2024; 14:1436874. [PMID: 39267845 PMCID: PMC11390531 DOI: 10.3389/fonc.2024.1436874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Breast cancer, as the most prevalent malignancy among women globally, continues to exhibit rising incidence rates, particularly in China. The disease predominantly affects women aged 40 to 60 and is influenced by both genetic and environmental factors. This study focuses on the role of H19 gene polymorphisms, investigating their impact on breast cancer susceptibility, clinical outcomes, and response to treatment. Methods We engaged 581 breast cancer patients and 558 healthy controls, using TaqMan assays and DNA sequencing to determine genotypes at specific loci (rs11042167, rs2071095, rs2251375). We employed in situ hybridization and immunohistochemistry to measure the expression levels of LincRNA H19, miR-675, MRP3, HOXA1, and MMP16 in formalin-fixed, paraffin-embedded samples. Statistical analyses included chi-squared tests, logistic regression, and Kaplan-Meier survival curves to evaluate associations between genetic variations, gene expression, and clinical outcomes. Results Genotypes AG at rs11042167, GT at rs2071095, and AC at rs2251375 were significantly associated with increased risk of breast cancer. Notably, the AA genotype at rs11042167 and TT genotype at rs2071095 were linked to favorable prognosis. High expression levels of LincRNA H19, miR-675, MRP3, HOXA1, and MMP16 in cancer tissues correlated with advanced disease stages and poorer survival rates. Spearman correlation analysis revealed significant positive correlations between the expression of LincRNA H19 and miR-675 and specific genotypes, highlighting their potential regulatory roles in tumor progression. Discussion The study underscores the critical roles of LincRNA H19 and miR-675 as prognostic biomarkers in breast cancer, with their overexpression associated with disease progression and adverse outcomes. The H19/LincRNA H19/miR-675/MRP3-HOXA1-MMP16 axis offers promising targets for new therapeutic strategies, reflecting the complex interplay between genetic markers and breast cancer pathology. Conclusion The findings confirm that certain H19 SNPs are associated with heightened breast cancer risk and that the expression profiles of related genetic markers can significantly influence prognosis and treatment response. These biomarkers hold potential as targets for personalized therapy and early detection strategies in breast cancer, underscoring the importance of genetic research in understanding and managing this disease.
Collapse
Affiliation(s)
- Ying Qi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pengfei Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Aria H, Azizi M, Nazem S, Mansoori B, Darbeheshti F, Niazmand A, Daraei A, Mansoori Y. Competing endogenous RNAs regulatory crosstalk networks: The messages from the RNA world to signaling pathways directing cancer stem cell development. Heliyon 2024; 10:e35208. [PMID: 39170516 PMCID: PMC11337742 DOI: 10.1016/j.heliyon.2024.e35208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Cancer stem cells (CSCs) are one of the cell types that account for cancer heterogeneity. The cancer cells arrest in G0 and generate non-CSC progeny through self-renewal and pluripotency, resulting in tumor recurrence, metastasis, and resistance to chemotherapy. They can stimulate tumor relapse and re-grow a metastatic tumor. So, CSCs is a promising target for eradicating tumors, and developing an anti-CSCs therapy has been considered. In recent years competing endogenous RNA (ceRNA) has emerged as a significant class of post-transcriptional regulators that affect gene expression via competition for microRNA (miRNA) binding. Furthermore, aberrant ceRNA expression is associated with tumor progression. Recent findings show that ceRNA network can cause tumor progression through the effect on CSCs. To overcome therapeutic resistance due to CSCs, we need to improve our current understanding of the mechanisms by which ceRNAs are implicated in CSC-related relapse. Thus, this review was designed to discuss the role of ceRNAs in CSCs' function. Targeting ceRNAs may open the path for new cancer therapeutic targets and can be used in clinical research.
Collapse
Affiliation(s)
- Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Azizi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Nazem
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnam Mansoori
- Pediatrics Department, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzaneh Darbeheshti
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
8
|
Obaid Saleh R, Shbeer AM, Jetti R, Ahmed Robadi I, Hjazi A, Hussein Kareem A, Noori Shakir M, Qasim Alasheqi M, Alawadi A, Haslany A. Association between lncRNAs with stem cells in cancer; a particular focus on lncRNA-CSCs axis in cancer immunopathogenesis. Int Immunopharmacol 2024; 136:112306. [PMID: 38833843 DOI: 10.1016/j.intimp.2024.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
A unique population of cells known as cancer stem cells (CSCs) is essential to developing and spreading cancer. Cancer initiation, maintenance, and progression are all believed to be significantly impacted by the distinct characteristics these cells exhibit regarding self-renewal, proliferation, and differentiation. Transcriptional, post-transcriptional, and translational processes are the only steps of gene expression that lncRNAs can affect. As a result, these proteins participate in numerous biological processes, including the repair of DNA damage, inflammatory reactions, metabolic control, the survival of cells, intercellular communication, and the development and specialization of cells. Studies have indicated that lncRNAs are important for controlling the increase in the subset of CSCs contributing to cancer development. The knowledge that is currently available about lncRNAs and their critical role in maintaining the biological properties of CSCs is highlighted in this study.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ibrahim Ahmed Robadi
- Department of Pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Haslany
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| |
Collapse
|
9
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
10
|
Khalafizadeh A, Hashemizadegan SD, Shokri F, Bakhshinejad B, Jabbari K, Motavaf M, Babashah S. Competitive endogenous RNA networks: Decoding the role of long non-coding RNAs and circular RNAs in colorectal cancer chemoresistance. J Cell Mol Med 2024; 28:e18197. [PMID: 38506091 PMCID: PMC10951891 DOI: 10.1111/jcmm.18197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/17/2023] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Colorectal cancer (CRC) is recognized as one of the most common gastrointestinal malignancies across the globe. Despite significant progress in designing novel treatments for CRC, there is a pressing need for more effective therapeutic approaches. Unfortunately, many patients undergoing chemotherapy develop drug resistance, posing a significant challenge for cancer treatment. Non-coding RNAs (ncRNAs) have been found to play crucial roles in CRC development and its response to chemotherapy. However, there are still gaps in our understanding of interactions among various ncRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and microRNAs (miRNAs). These ncRNAs can act as either oncogenes or tumour suppressors, affecting numerous biological functions in different cancers including CRC. A class of ncRNA molecules known as competitive endogenous RNAs (ceRNAs) has emerged as a key player in various cellular processes. These molecules form networks through lncRNA/miRNA/mRNA and circRNA/miRNA/mRNA interactions. In CRC, dysregulation of ceRNA networks has been observed across various cellular processes, including proliferation, apoptosis and angiogenesis. These dysregulations are believed to play a significant role in the progression of CRC and, in certain instances, may contribute to the development of chemoresistance. Enriching our knowledge of these dysregulations holds promise for advancing the field of diagnostic and therapeutic modalities for CRC. In this review, we discuss lncRNA- and circRNA-associated ceRNA networks implicated in the emergence and advancement of drug resistance in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | | | - Fatemeh Shokri
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
- Research and Development Center of BiotechnologyTarbiat Modares UniversityTehranIran
| |
Collapse
|
11
|
Zhong C, Wang G, Guo M, Zhu N, Chen X, Yan Y, Li N, Yu W. The Role of Tumor Stem Cells in Colorectal Cancer Drug Resistance. Cancer Control 2024; 31:10732748241274196. [PMID: 39215442 PMCID: PMC11367616 DOI: 10.1177/10732748241274196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Colorectal cancer is a major cause of mortality among the prevalent malignant tumors of the gastrointestinal tract. Although chemotherapy is a standard treatment for colorectal cancer, its efficacy is limited by chemoresistance. Recent studies have investigated targeting tumor stem cells as a potential new therapeutic approach for addressing chemoresistance in colorectal cancer. Colorectal cancer frequently relapses, with tumor stem cells often representing one of the leading causes of treatment failure. Purpose: Understanding drug resistance in colorectal cancer stem cells is crucial for improving treatment outcomes. By focusing on developing targeted therapies that specifically address drug resistance in colorectal cancer stem cells, there is potential to make significant advancements in the treatment of colorectal cancer.This approach may lead to more effective and lasting outcomes in patients battling colorectal cancer. Research Design: In this review, a comprehensive overview of recent research on colorectal cancer stem cell treatment resistance is presented.Results: Elucidating the key underlying mechanisms. This review also highlights the potential benefits of targeted therapies in overcoming colorectal cancer resistance to treatment. Conclusions: CCSCs are key players in drug resistance of CRC, indicating their potential as targets for effective therapy. Elucidating their role in this process could aid in discovering tailored treatment strategies.The significance of signaling pathways, TME, and miRNA in regulating drug resistance in CCSCs is been highlighted.
Collapse
Affiliation(s)
- Chen Zhong
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guojuan Wang
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Guo
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Naicheng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiudan Chen
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuwei Yan
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nanxin Li
- Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wenyan Yu
- Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
12
|
Rezaee A, Tehrany PM, Tirabadi FJ, Sanadgol N, Karimi AS, Ajdari A, Eydivandi S, Etemad S, Rajabi R, Rahmanian P, Khorrami R, Nabavi N, Aref AR, Fan X, Zou R, Rashidi M, Zandieh MA, Hushmandi K. Epigenetic regulation of temozolomide resistance in human cancers with an emphasis on brain tumors: Function of non-coding RNAs. Biomed Pharmacother 2023; 165:115187. [PMID: 37499452 DOI: 10.1016/j.biopha.2023.115187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Brain tumors, which are highly malignant, pose a significant threat to health and often result in substantial rates of mortality and morbidity worldwide. The brain cancer therapy has been challenging due to obstacles such as the BBB, which hinders effective delivery of therapeutic agents. Additionally, the emergence of drug resistance further complicates the management of brain tumors. TMZ is utilized in brain cancer removal, but resistance is a drawback. ncRNAs are implicated in various diseases, and their involvement in the cancer is particularly noteworthy. The focus of the current manuscript is to explore the involvement of ncRNAs in controlling drug resistance, specifically in the context of resistance to the chemotherapy drug TMZ. The review emphasizes the function of ncRNAs, particularly miRNAs, in modulating the growth and invasion of brain tumors, which significantly influences their response to TMZ treatment. Through their interactions with various molecular pathways, miRNAs are modulators of TMZ response. Similarly, lncRNAs also associate with molecular pathways and miRNAs, affecting the efficacy of TMZ chemotherapy. Given their functional properties, lncRNAs can either induce or suppress TMZ resistance in brain tumors. Furthermore, circRNAs, which are cancer controllers, regulate miRNAs by acting as sponges, thereby impacting the response to TMZ chemotherapy. The review explores the correlation between ncRNAs and TMZ chemotherapy, shedding light on the underlying molecular pathways involved in this process.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | | | - Farimah Jafari Tirabadi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Negin Sanadgol
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asal Sadat Karimi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Atra Ajdari
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sepideh Eydivandi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Etemad
- Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Semnan, Iran.
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada.
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA.
| | - Xiaoping Fan
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Tufail M. HOTAIR in colorectal cancer: structure, function, and therapeutic potential. Med Oncol 2023; 40:259. [PMID: 37530984 DOI: 10.1007/s12032-023-02131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
lncRNAs play a vital part in cancer development by regulating gene expression. Among these, the lncRNA HOTAIR has gained considerable attention due to its entanglement in multiple cellular processes, including chromatin remodeling and gene regulation. HOTAIR has a complex structure consisting of multiple domains that interact with various protein complexes and RNA molecules. In colorectal cancer (CRC), HOTAIR expression is upregulated, and its overexpression has been correlated with poor patient prognosis and resistance to chemotherapy. HOTAIR has been found to regulate gene expression and promote cancer growth by interacting with specific miRNAs. In addition, HOTAIR has been implicated in the development of treatment resistance in colorectal cancer. To develop effective treatments, it's important to understand how HOTAIR regulates gene expression. This article discusses HOTAIR's structure, functions, and mechanisms in CRC and its potential as a target for therapy. The author also suggests future research directions to better understand HOTAIR's role in CRC progression and drug resistance.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
14
|
Shirvani H, Ghanavi J, Aliabadi A, Mousavinasab F, Talebi M, Majidpoor J, Najafi S, Miryounesi SM, Aghaei Zarch SM. MiR-211 plays a dual role in cancer development: From tumor suppressor to tumor enhancer. Cell Signal 2023; 101:110504. [PMID: 36309329 DOI: 10.1016/j.cellsig.2022.110504] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/03/2022]
Abstract
Cancer is a general term for more than 100 unique malignancies in different organs of the body. Each cancer type and subtype has its own unique genetic, epigenetic, and cellular factors accountable for malignant progression and metastasis. Small non-coding RNAs called miRNAs target mRNAs and play a vital part in the pathogenesis of human diseases, specifically cancer. Recent investigations provided knowledge of the deregulation of miR-211 in various cancer types and disclosed that miR-211 has an oncogenic or tumor-suppressive impact on tumourigenesis and cancer development. Moreover, recent discoveries which clarify the essential functions of miR-211 might provide proof for its prognosis, diagnostic and therapeutic impact on cancer. Thereby, this review will discuss recent findings regarding miR-211 expression level, target genes, and mechanisms in different cancers. In addition, the most recent results that propose miR-211 usefulness as a noninvasive biomarker and therapeutic factor for the diagnosis and treatment of cancer will be explained.
Collapse
Affiliation(s)
- Hanieh Shirvani
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Jalaledin Ghanavi
- Mycobacteriology Research Centre, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Aliabadi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Mousavinasab
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyyed Mohammad Miryounesi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Fan S, Xing J, Jiang Z, Zhang Z, Zhang H, Wang D, Tang D. Effects of Long Non-Coding RNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Cancers (Basel) 2022; 14:5813. [PMID: 36497293 PMCID: PMC9735521 DOI: 10.3390/cancers14235813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Although an imbalanced gut microbiome is closely associated with colorectal cancer (CRC), how the gut microbiome affects CRC is not known. Long non-coding RNAs (lncRNAs) can affect important cellular functions such as cell division, proliferation, and apoptosis. The abnormal expression of lncRNAs can promote CRC cell growth, proliferation, and metastasis, mediating the effects of the gut microbiome on CRC. Generally, the gut microbiome regulates the lncRNAs expression, which subsequently impacts the host transcriptome to change the expression of downstream target molecules, ultimately resulting in the development and progression of CRC. We focused on the important role of the microbiome in CRC and their effects on CRC-related lncRNAs. We also reviewed the impact of the two main pathogenic bacteria, Fusobacterium nucleatum and enterotoxigenic Bacteroides fragilis, and metabolites of the gut microbiome, butyrate, and lipopolysaccharide, on lncRNAs. Finally, available therapies that target the gut microbiome and lncRNAs to prevent and treat CRC were proposed.
Collapse
Affiliation(s)
- Shiying Fan
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
17
|
Shaath H, Vishnubalaji R, Elango R, Kardousha A, Islam Z, Qureshi R, Alam T, Kolatkar PR, Alajez NM. Long non-coding RNA and RNA-binding protein interactions in cancer: Experimental and machine learning approaches. Semin Cancer Biol 2022; 86:325-345. [PMID: 35643221 DOI: 10.1016/j.semcancer.2022.05.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023]
Abstract
Understanding the complex and specific roles played by non-coding RNAs (ncRNAs), which comprise the bulk of the genome, is important for understanding virtually every hallmark of cancer. This large group of molecules plays pivotal roles in key regulatory mechanisms in various cellular processes. Regulatory mechanisms, mediated by long non-coding RNA (lncRNA) and RNA-binding protein (RBP) interactions, are well documented in several types of cancer. Their effects are enabled through networks affecting lncRNA and RBP stability, RNA metabolism including N6-methyladenosine (m6A) and alternative splicing, subcellular localization, and numerous other mechanisms involved in cancer. In this review, we discuss the reciprocal interplay between lncRNAs and RBPs and their involvement in epigenetic regulation via histone modifications, as well as their key role in resistance to cancer therapy. Other aspects of RBPs including their structural domains, provide a deeper knowledge on how lncRNAs and RBPs interact and exert their biological functions. In addition, current state-of-the-art knowledge, facilitated by machine and deep learning approaches, unravels such interactions in better details to further enhance our understanding of the field, and the potential to harness RNA-based therapeutics as an alternative treatment modality for cancer are discussed.
Collapse
Affiliation(s)
- Hibah Shaath
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Radhakrishnan Vishnubalaji
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ramesh Elango
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Ahmed Kardousha
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, PO Box 34110, Doha, Qatar
| | - Nehad M Alajez
- Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar; College of Health & Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
18
|
Hong Q, Mai P, Wu B, Wang H, Xiao M, You J. Long non-coding RNA TDRG1 aggravates colorectal cancer stemness by binding with miR-873-5p to upregulate PRKAR2. ENVIRONMENTAL TOXICOLOGY 2022; 37:2366-2374. [PMID: 35730470 DOI: 10.1002/tox.23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The effects of long non-coding RNA TDRG1 have been established in several tumors; however, its roles in colorectal cancer (CRC) progression are never been found. Here, we found that TDRG1 level was upregulated in CRC cells compared to that in normal colon epithelial cells. Additionally, TDRG1 level was remarkably upregulated in 3D non-adherent spheres derived from the parental CRC cells. Further in vitro and in vivo revealed that TDRG1 knockdown suppressed the stemness of CRC cells. What's more, combined with bioinformatics analysis, luciferase reporter and RNA pull down experiments showed that TDRG1 could bind to miR-873-5p, downregulated its level and thus increase the expression of PRKAR2. Finally, it was shown that TDRG1 functioned through the miR-873-5p/PRKAR2 axis. This study demonstrated a novel TDRG1/miR-873-5p/PRKAR2 signaling in CRC progression.
Collapse
Affiliation(s)
- Qingqi Hong
- Department of Gastrointestinal oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, P. R. China. The School of Clinical Medicine, Fujian Medical University. The Graduate School of Fujian Medical University, Xiamen, China
| | - Peishan Mai
- Department of Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Wu
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haibin Wang
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingzhe Xiao
- The State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing, China
| | - Jun You
- Department of Gastrointestinal oncology Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, P. R. China. The School of Clinical Medicine, Fujian Medical University. The Graduate School of Fujian Medical University, Xiamen, China
| |
Collapse
|
19
|
Peña-Flores JA, Bermúdez M, Ramos-Payán R, Villegas-Mercado CE, Soto-Barreras U, Muela-Campos D, Álvarez-Ramírez A, Pérez-Aguirre B, Larrinua-Pacheco AD, López-Camarillo C, López-Gutiérrez JA, Garnica-Palazuelos J, Estrada-Macías ME, Cota-Quintero JL, Barraza-Gómez AA. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front Oncol 2022; 12:965628. [PMID: 35978835 PMCID: PMC9376329 DOI: 10.3389/fonc.2022.965628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) originates in the squamous cell lining the mucosal surfaces of the head and neck region, including the oral cavity, nasopharynx, tonsils, oropharynx, larynx, and hypopharynx. The heterogeneity, anatomical, and functional characteristics of the patient make the HNSCC a complex and difficult-to-treat disease, leading to a poor survival rate and a decreased quality of life due to the loss of important physiologic functions and aggressive surgical injury. Alteration of driver-oncogenic and tumor-suppressing lncRNAs has recently been recently in HNSCC to obtain possible biomarkers for diagnostic, prognostic, and therapeutic approaches. This review provides current knowledge about the implication of lncRNAs in drug resistance mechanisms in HNSCC. Chemotherapy resistance is a major therapeutic challenge in HNSCC in which lncRNAs are implicated. Lately, it has been shown that lncRNAs involved in autophagy induced by chemotherapy and epithelial-mesenchymal transition (EMT) can act as mechanisms of resistance to anticancer drugs. Conversely, lncRNAs involved in mesenchymal-epithelial transition (MET) are related to chemosensitivity and inhibition of invasiveness of drug-resistant cells. In this regard, long non-coding RNAs (lncRNAs) play a pivotal role in both processes and are important for cancer detection, progression, diagnosis, therapy response, and prognostic values. As the involvement of more lncRNAs is elucidated in chemoresistance mechanisms, an improvement in diagnostic and prognostic tools could promote an advance in targeted and specific therapies in precision oncology.
Collapse
Affiliation(s)
- José A. Peña-Flores
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Mercedes Bermúdez
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | - Uriel Soto-Barreras
- Faculty of Odontology, Autonomous University of Chihuahua, Chihuahua, Mexico
| | | | | | | | | | | | - Jorge A. López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
| | | | | | - Juan L. Cota-Quintero
- Faculty of Biology, Autonomous University of Sinaloa, Culiacán, Mexico
- Faculty of Odontology , Autonomous University of Sinaloa, Culiacán, Mexico
| | | |
Collapse
|
20
|
Ke N, Chen L, Liu Q, Xiong H, Chen X, Zhou X. Downregulation of miR-211-5p Promotes Carboplatin Resistance in Human Retinoblastoma Y79 Cells by Affecting the GDNF-LIF Interaction. Front Oncol 2022; 12:848733. [PMID: 35311096 PMCID: PMC8925320 DOI: 10.3389/fonc.2022.848733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To investigate the role of the miR-211-5p-GDNF signaling pathway in carboplatin resistance of retinoblastoma Y79 cells and what factors it may be affected by. Methods A carboplatin-resistant retinoblastoma cell line (Y79R) was established in vitro. RNA-seq and microRNA-seq were constructed between Y79 and Y79R cells. RNA interference, RT-PCR, Western blot (WB), and flow cytometry were used to verify the expression of genes and proteins between the two cell lines. The TargetScan database was used to predict the microRNAs that regulate the target genes. STING sites and Co-Immunoprecipitation (COIP) were used to study protein–protein interactions. Results GDNF was speculated to be the top changed gene in the drug resistance in Y79R cell lines. Moreover, the speculation was verified by subsequent RT-PCR and WB results. When the expression of GDNF was knocked down, the IC50 of the Y79R cell line significantly reduced. GDNF was found to be the target gene of miR-211-5p. Downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells. MiR-211-5p can regulate the expression of GDNF. Our further research also found that GDNF can bind to LIF which is also a secreted protein. Conclusion Our results suggest that downregulation of miR-211-5p promotes carboplatin resistance in human retinoblastoma Y79 cells, and this process can be affected by GDNF–LIF interaction. These results can provide evidence for the reversal of drug resistance of RB.
Collapse
Affiliation(s)
- Ning Ke
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Liu
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Haibo Xiong
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinke Chen
- Department of Ophthalmology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Fan B, Zhang Q, Wang N, Wang G. LncRNAs, the Molecules Involved in Communications With Colorectal Cancer Stem Cells. Front Oncol 2022; 12:811374. [PMID: 35155247 PMCID: PMC8829571 DOI: 10.3389/fonc.2022.811374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer stem cells (CRCSCs) can actively self-renew, as well as having multidirectional differentiation and tumor regeneration abilities. Because the high functional activities of CRCSCs are associated with low cure rates in patients with colorectal cancer, efforts have sought to determine the function and regulatory mechanisms of CRCSCs. To date, however, the potential regulatory mechanisms of CRCSCs remain incompletely understood. Many non-coding genes are involved in tumor invasion and spread through their regulation of CRCSCs, with long non-coding RNAs (lncRNAs) being important non-coding RNAs. LncRNAs may be involved in the colorectal cancer development and drug resistance through their regulation of CRCSCs. This review systematically evaluates the latest research on the ability of lncRNAs to regulate CRCSC signaling pathways and the involvement of these lncRNAs in colorectal cancer promotion and suppression. The regulatory network of lncRNAs in the CRCSC signaling pathway has been determined. Further analysis of the potential clinical applications of lncRNAs as novel clinical diagnostic and prognostic biomarkers and therapeutic targets for colorectal cancer may provide new ideas and protocols for the prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Boyang Fan
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Zhang
- Department of Colorectal Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|