1
|
Yang Y, Zhang C, Li H, He Q, Xie J, Liu H, Cui F, Lei Z, Qin X, Liu Y, Xu M, Huang S, Zhang X. A review of molecular interplay between inflammation and cancer: The role of lncRNAs in pathogenesis and therapeutic potential. Int J Biol Macromol 2025; 309:142824. [PMID: 40187457 DOI: 10.1016/j.ijbiomac.2025.142824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The inflammatory microenvironment (IME) has been demonstrated to facilitate the initiation and progression of tumors throughout the inflammatory process. Simultaneously, cancer can initiate or intensify the inflammatory response, thereby promoting tumor progression. This review examines the dual role of long non-coding RNAs (lncRNAs) in the interplay between inflammation and cancer. LncRNA modulate inflammation-induced cancer by influencing the activation of signaling pathways (NF-κB, Wnt/β-catenin, mTOR, etc), microRNA (miRNA) sponging, protein interactions, interactions with immune cells, and encoding short peptides. In contrast, lncRNAs also impact cancer-induced inflammatory processes by regulating cytokine expression, mediating tumor-derived extracellular vesicles (EVs), modulating intracellular reactive oxygen species (ROS) levels, and facilitating metabolic reprogramming. Furthermore, the therapeutic potential of lncRNA and the challenges of clinical translation were explicitly discussed as well. Overall, this review aims to provide a comprehensive and systematic resource for future researchers investigating the impact of lncRNAs on inflammation and cancer.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chuxi Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huacui Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China; Tangshan Institute of Southwest Jiaotong University, Tangshan, China
| | - Qin He
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Jiang Xie
- Department of Pediatrics, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hongmei Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Fenfang Cui
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Ziqin Lei
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Xiaoyan Qin
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Ying Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Min Xu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China.
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Xu Zhang
- Department of Pharmacy, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu University of TCM, Chengdu, China.
| |
Collapse
|
2
|
Miao C, Sun R, Ji D, Wu M, Fu Q, Mei L, Wu Z. Mechanism of the GALNT family proteins in regulating tumorigenesis and development of lung cancer (Review). Mol Clin Oncol 2025; 22:37. [PMID: 40083861 PMCID: PMC11904754 DOI: 10.3892/mco.2025.2832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Lung cancer is one of the most common and lethal malignant tumors. Currently, surgical resection is the most effective treatment for early-stage lung cancer, and often results in favorable recovery outcomes. Therefore, early detection and control of lung cancer occurrence, invasion and metastasis are crucial for improving patient survival rates. Identifying tumor markers for lung cancer plays a vital role in facilitating early detection and control of its progression. The GALNT family proteins are enzymes that regulate the initial step in mucin O-glycan synthesis. It has been revealed that the expression of polypeptide N-acetyl-galactosamine-transferase (GALNT) family members is dysregulated in various tumors, and is closely associated with tumorigenesis, tumor cell growth, metastasis, adhesion, and serves as an important early indicator of tumor development. The present review compiles and analyzes findings concerning the role of GALNT family proteins in regulating lung cancer, with the goals of elucidating their mechanisms in lung cancer occurrence and progression and providing insights for improving the prognosis and therapeutic treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Changchun Miao
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Ronggui Sun
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Deyu Ji
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Min Wu
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Qigui Fu
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Liangliang Mei
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| | - Zhiyong Wu
- Department of Cardiothoracic Surgery, Mingguang People's Hospital, Mingguang, Anhui 239400, P.R. China
| |
Collapse
|
3
|
Lenda B, Żebrowska-Nawrocka M, Balcerczak E. Comprehensive Bioinformatics Analysis Reveals the Potential Role of the hsa_circ_0001081/miR-26b-5p Axis in Regulating COL15A1 and TRIB3 within Hypoxia-Induced miRNA/mRNA Networks in Glioblastoma Cells. Biomedicines 2024; 12:2236. [PMID: 39457549 PMCID: PMC11504030 DOI: 10.3390/biomedicines12102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The intrinsic molecular heterogeneity of glioblastoma (GBM) is one of the main reasons for its resistance to conventional treatment. Mesenchymal GBM niches are associated with hypoxic signatures and a negative influence on patients' prognosis. To date, competing endogenous RNA (ceRNA) networks have been shown to have a broad impact on the progression of various cancers. In this study, we decided to construct hypoxia-specific microRNA/ messengerRNA (miRNA/mRNA) networks with a putative circular RNA (circRNA) regulatory component using available bioinformatics tools. Methods: For ceRNA network construction, we combined publicly available data deposited in the Gene Expression Omnibus (GEO) and interaction pairs obtained from miRTarBase and circBank; a differential expression analysis of GBM cells was performed with limma and deseq2. For the gene ontology (GO) enrichment analysis, we utilized clusterProfiler; GBM molecular subtype analysis was performed in the Glioma Bio Discovery Portal (Glioma-BioDP). Results: We observed that miR-26b-5p, generally considered a tumor suppressor, was upregulated under hypoxic conditions in U-87 MG cells. Moreover, miR-26b-5p could potentially inhibit TRIB3, a gene associated with tumor proliferation. Protein-protein interaction (PPI) network and GO enrichment analyses identified a hypoxia-specific subcluster enriched in collagen-associated terms, with six genes highly expressed in the mesenchymal glioma group. This subcluster included hsa_circ_0001081/miR-26b-5p-affected COL15A1, a gene downregulated in hypoxic U-87 MG cells yet highly expressed in the mesenchymal GBM subtype. Conclusions: The interplay between miR-26b-5p, COL15A1, and TRIB3 suggests a complex regulatory mechanism that may influence the extracellular matrix composition and the mesenchymal transformation in GBM. However, the precise impact of the hsa_circ_0001081/miR-26b-5p axis on collagen-associated processes in hypoxia-induced GBM cells remains unclear and warrants further investigation.
Collapse
Affiliation(s)
- Bartosz Lenda
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.Ż.-N.); (E.B.)
| | | | | |
Collapse
|
4
|
Yu S, Yang L, Shu J, Zhao T, Han L, Cai T, Zhao G. Olink Proteomics-Based Exploration of Immuno-Oncology-Related Biomarkers Leading to Lung Adenocarcinoma Progression. J Proteome Res 2024; 23:3674-3681. [PMID: 39028944 DOI: 10.1021/acs.jproteome.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
INTRODUCTION It is crucial to investigate the distinct proteins that contribute to the advancement of lung cancer. MATERIAL AND METHODS We analyzed the expression levels of 92 immuno-oncology-related proteins in 96 pairs of lung adenocarcinoma tissue samples using Olink proteomics. The differentially expressed proteins (DEPs) were successively screened in tumor and paraneoplastic groups, early and intermediate-late groups by a nonparametric rank sum test, and the distribution and expression levels of DEPs were determined by volcano and heat maps, etc., and the area under the curve was calculated. RESULTS A total of 24 DEPs were identified in comparisons between tumor and paracancerous tissues. Among them, interleukin-8 (IL8) and chemokine (C-C motif) ligand 20 (CCL20) as potential markers for distinguishing tumor tissues. Through further screening, it was found that interleukin-6 (IL6) and vascular endothelial growth factor A (VEGFA) may be able to lead to tumor progression through the JaK-STAT signaling pathway, Toll-like receptor signaling pathway and PI3K/AKT signaling pathway. Interestingly, our study revealed a down-regulation of IL6 and VEGFA in tumor tissues compared to paracancerous tissues. CONCLUSIONS IL8 + CCL20 (AUC: 0.7056) have the potential to differentiate tumor tissue from paracancerous tissue; IL6 + VEGFA (AUC: 0.7531) are important protein markers potentially responsible for tumor progression.
Collapse
Affiliation(s)
- Shiwen Yu
- School of Medicine, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Liangwei Yang
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, Zhejiang, China
| | - Jianfeng Shu
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, Zhejiang, China
| | - Tian Zhao
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, Zhejiang, China
| | - Liyuan Han
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, Zhejiang, China
| | - Ting Cai
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo 315000, Zhejiang, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, Zhejiang, China
| |
Collapse
|
5
|
Lv W, Liu H, Zheng Q, Niu H. LINC02535 + miR-30a-5p combination enhances proliferation and inhibits apoptosis in metastatic breast Cancer cells. Toxicol In Vitro 2024; 98:105845. [PMID: 38754600 DOI: 10.1016/j.tiv.2024.105845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Current clinical therapies for metastatic breast cancer (MBC) have limited therapeutic efficacy and induce significant systemic side effects, leading to poor patient compliance. To address this challenge, this investigation focuses on the design of LINC02535 + miR-30a-5p for treating breast cancer. In vitro cytotoxicity studies confirmed that LINC02535 + miR-30a-5p was more effective in 4 T1 cells, with reduced toxicity in NIH3T3 cells. Further verification of cellular morphology was achieved through various biochemical staining methods. Additionally, the antimetastatic attributes of LINC02535 + miR-30a-5p have been evaluated using both migration scratch and Transwell migration assays, which have collectively revealed excellent antimetastatic potential. The DNA fragmentation of the 4 T1 cells was assessed using a comet assay. LINC02535 + miR-30a-5p improved ROS levels and caused mitochondrial membrane potential alterations and DNA damage, which resulted in apoptosis. Therefore, we propose that LINC02535 + miR-30a-5p could be an alternative therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Wei Lv
- Department of General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, China
| | - Hui Liu
- Department of Breast and Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Qi Zheng
- Department of Gynecological Ward, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Hu Niu
- Department of Breast and Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China..
| |
Collapse
|
6
|
Liu XS, Liu ZY, Zeng DB, Hu J, Chen XL, Gu JL, Gao Y, Pei ZJ. Functional enrichment analysis reveals the involvement of DARS2 in multiple biological pathways and its potential as a therapeutic target in esophageal carcinoma. Aging (Albany NY) 2024; 16:3934-3954. [PMID: 38382106 PMCID: PMC10929822 DOI: 10.18632/aging.205569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE The enzyme Aspartyl tRNA synthetase 2 (DARS2) is a crucial enzyme in the mitochondrial tRNA synthesis pathway, playing a critical role in maintaining normal mitochondrial function and protein synthesis. However, the role of DARS2 in ESCA is unclear. MATERIALS AND METHODS Transcriptional data of pan-cancer and ESCA were downloaded from UCSC XENA, TCGA, and GEO databases to analyze the differential expression of DARS2 between tumor samples and normal samples, and its correlation with clinicopathological features of ESCA patients. R was used for GO, KEGG, and GSEA functional enrichment analysis of DARS2 co-expression and to analyze the connection of DARS2 with glycolysis and m6A-related genes. In vitro experiments were performed to assess the effects of interfering with DARS2 expression on ESCA cells. TarBase v.8, mirDIP, miRTarBase, ENCORI, and miRNet databases were used to analyze and construct a ceRNA network containing DARS2. RESULTS DARS2 was overexpressed in various types of tumors. In vitro experiments confirmed that interfering with DARS2 expression significantly affected the proliferation, migration, apoptosis, cell cycle, and glycolysis of ESCA cells. DARS2 may be involved in multiple biological pathways related to tumor development. Furthermore, correlation and differential analysis revealed that DARS2 may regulate ESCA m6A modification through its interaction with METTL3 and YTHDF1. A ceRNA network containing DARS2, DLEU2/has-miR-30a-5p/DARS2, was successfully predicted and constructed. CONCLUSIONS Our findings reveal the upregulation of DARS2 in ESCA and its association with clinical features, glycolysis pathway, m6A modification, and ceRNA network. These discoveries provide valuable insights into the molecular mechanisms underlying ESCA.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zi-Yue Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Dao-Bing Zeng
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jian Hu
- Department of Critical Care Medicine, Danjiangkou First Hospital, Danjiangkou 420381, Hubei, China
| | - Xuan-Long Chen
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jiao-Long Gu
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
7
|
Miao Y, Liu J. Tumor-suppressive action of miR-30a-5p in lung adenocarcinoma correlates with ABL2 inhibition and PI3K/AKT pathway inactivation. Clin Transl Oncol 2024; 26:398-413. [PMID: 37479901 DOI: 10.1007/s12094-023-03255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 07/23/2023]
Abstract
INTRODUCTION ABL2 contributes to the oncogenic potential of cancers, pointing to its inhibition as a possible strategy against malignant diseases. Bioinformatics prediction of upstream effector miR-30a-5p for ABL2 allowed us to hypothesize and then validate mechanistic actions of miR-30a-5p in lung adenocarcinoma (LUAD). MATERIALS AND METHODS The ABL2 expression in LUAD was analyzed in the TCGA data, clinical samples, and cell lines. The shRNA-mediated silencing of ABL2 was introduced to illustrate its effect on malignant phenotypes of LUAD cells. The binding affinity between ABL2 and miR-30a-5p was verified by luciferase activity and RNA pull-down assay. Ectopic expression, knockdown methods, and PI3K inhibitor LY294002 were used to investigate their effects on in vitro biological characteristics and in vivo tumor growth of LUAD cells. Using nude mouse lung adenocarcinoma in situ and brain metastasis models to validate the inhibitory effect of miR-30a-5p on LUAD by regulating the ABL2/PI3K/AKT signaling axis. RESULTS High expression of ABL2 and poor expression of miR-30a-5p were noticed in LUAD tissues and cell lines. Importantly, miR-30a-5p was demonstrated to target and downregulate ABL2, subsequently inactivating the PI3K/AKT pathway. miR-30a-5p inhibited the malignant phenotypes of LUAD cells by inhibiting ABL2 expression and inactivating the PI3K/AKT pathway. For in vivo experiments, miR-30a-5p was substantiated to thwart tumor tumorigenesis by regulating the ABL2/PI3K/AKT axis. In addition, miR-30a-5p suppresses the occurrence and development of in situ lung cancer and brain metastasis via the ABL2/PI3K/AKT signaling pathway. CONCLUSION This study underscores the inhibitory role of miR-30a-5p in LUAD through the ABL2/PI3K/AKT axis, which may be a viable target for LUAD treatment.
Collapse
Affiliation(s)
- Yajun Miao
- Department of Oncology, Nantong First People's Hospital, Nantong, 226000, People's Republic of China
| | - Jun Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, No.20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|