1
|
Pakdaman S, Nouri G, Mulligan CN, Nasiri F. Integration of Membrane-Based Pretreatment Methods with Pressure-Retarded Osmosis for Performance Enhancement: A Review. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1020. [PMID: 40077246 PMCID: PMC11901225 DOI: 10.3390/ma18051020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Osmotic energy provides an emerging renewable alternative by leveraging the salinity gradient between two solutions. Among these technologies, pressure-retarded osmosis (PRO) has attracted attention; however, its deployment is hindered by obstacles resulting from impurities in feed and draw solutions and lack of suitable membranes. This review explores the integration of membrane-based pretreatments with PRO, highlighting their influence on resolving the technical drawbacks of standalone PRO systems. Membrane-based pretreatments have shown considerable potential to overcome these challenges by improving the quality of water, reducing membrane fouling and enhancing its performance, and ultimately contributing to recovery of energy, resulting in higher power density. Additionally, the use of different nanomaterials has been proposed for membrane modification to optimize PRO performance. Moreover, the study investigates recent advancements in hybrid configurations for harnessing existing infrastructure and to enhance energy efficiency. Offering a comprehensive review on this integrated approach contributes to valuable insights for advancing membrane-based hybrid systems toward commercial viability. Consequently, investment in developing advanced computational modeling and experimental validation, utilization of advanced membrane materials with higher fouling resistance, and optimization of system configurations by using dual-stage and multi-stage designs are required to overcome these limitations.
Collapse
Affiliation(s)
| | | | - Catherine N. Mulligan
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, QC H3G 1M8, Canada; (S.P.); (G.N.); (F.N.)
| | | |
Collapse
|
2
|
Ruzvidzo KH, Kaur R, Jain M. Enhanced forward osmosis desalination of brackish water using phase-separating ternary organic draw solutions of hydroxypropyl cellulose and propylene glycol propyl ether. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11110. [PMID: 39155465 DOI: 10.1002/wer.11110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
This study introduces draw solutions for application in forward osmosis (FO) processes, combining mono propylene glycol propyl ether (PGPE) with the cellulose derivative hydroxypropyl cellulose (HPC). A total of 16 unique single-solute and ternary organic draw solutions were prepared and evaluated, leading to the selection of three promising solutions for further investigation. Notably, eight of the initial organic draw solutions demonstrated osmotic pressures exceeding 2.4 MPa. The dynamic viscosities of all draw solutions exhibited a significant reduction with increasing temperature. Among the investigated solutions, the 0.25HPC-3.75PGPE demonstrated the most favorable FO performance, achieving average experimental water fluxes of 11.062 and 9.852 Lm-2 h-1 (LMH) against a 1 g/L NaCl brackish feed solution across two FO runs. PRACTITIONER POINTS: Hydroxypropyl cellulose (HPC, MW ~100,000) was mixed with propylene glycol propyl ether (PGPE) as draw solutes for FO processes. Seven combinations of HPC and PGPE produced osmolalities greater than 1000 mOsm/kg. 0.5HPC-7.5PGPE ternary draw solution achieved experimental water fluxes of 11.062 and 9.852 LMH against 1 g/L NaCl brackish feed solution. Leveraging the LCSTs of these ternary organic solutions holds promise for improved separation and regeneration processes.
Collapse
Affiliation(s)
| | - Raminder Kaur
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| | - Manish Jain
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| |
Collapse
|
3
|
Reddy AS, Wanjari VP, Singh SP. Design, synthesis, and application of thermally responsive draw solutes for sustainable forward osmosis desalination: A review. CHEMOSPHERE 2023; 317:137790. [PMID: 36626951 DOI: 10.1016/j.chemosphere.2023.137790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Forward osmosis (FO) is an emerging sustainable desalination technology; however, it is not a stand-alone process and requires an additional step to recover the water or regenerate the draw solute (DS), making it energy extensive. Therefore, incorporating inexpensive energy sources for DS regeneration is a viable solution to compete with reverse osmosis desalination technology. Hence, selecting suitable DS and its regeneration became a crucial research focus in FO desalination. Among various DSs reported, thermally responsive DSs (TRDS) provide an opportunity to integrate low-grade energy sources for DS regeneration. Utilizing such inexpensive energy will reduce fossil fuel energy demand, lower the cost of desalination, and minimize the carbon footprint. Hence, this review explores the TRDS for FO-based desalination with its design, synthesis, and applications. The manuscript has discussed the classification and selection criteria for the DSs, and how traditional and new-generation TRDSs are designed and synthesized from cationic and anionic moieties of ionic liquids, hydrogels, and other chemicals. The manuscript has also given importance to design criteria such as osmotic strength, viscosity, toxicity, and thermal stability for TRDSs. Furthermore, a detailed discussion on the FO performance, energy, and economic aspects of TRDSs has been reviewed, along with a discussion on the possible low-grade energy sources for the recovery of TRDS. Finally, the challenges and future directions for TRDSs have been discussed to drive FO toward sustainable desalination technology.
Collapse
Affiliation(s)
- A Sudharshan Reddy
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Vikram P Wanjari
- Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P Singh
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India; Centre for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India; Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Cao DQ, Tang K, Zhang WY, Chang C, Han JL, Tian F, Hao XD. Calcium Alginate Production through Forward Osmosis with Reverse Solute Diffusion and Mechanism Analysis. MEMBRANES 2023; 13:207. [PMID: 36837710 PMCID: PMC9968021 DOI: 10.3390/membranes13020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Calcium alginate (Ca-Alg) is a novel target product for recovering alginate from aerobic granular sludge. A novel Ca-Alg production method was proposed herein where Ca-Alg was formed in a sodium alginate (SA) feed solution (FS) and concentrated via forward osmosis (FO) with Ca2+ reverse osmosis using a draw solution of CaCl2. An abnormal reverse solute diffusion was observed, with the average reverse solute flux (RSF) decreasing with increasing CaCl2 concentrations, while the average RSF increased with increasing alginate concentrations. The RSF of Ca2+ in FS decreased continuously as the FO progressed, using 1.0 g/L SA as the FS, while it increased initially and later decreased using 2.0 and 3.0 g/L SA as the FS. These results were attributed to the Ca-Alg recovery production (CARP) formed on the FO membrane surface on the feed side, and the percentage of Ca2+ in CARP to total Ca2+ reverse osmosis reached 36.28%. Scanning electron microscopy and energy dispersive spectroscopy also verified CARP existence and its Ca2+ content. The thin film composite FO membrane with a supporting polysulfone electrospinning nanofiber membrane layer showed high water flux and RSF of Ca2+, which was proposed as a novel FO membrane for Ca-Alg production via the FO process with Ca2+ reverse diffusion. Four mechanisms including molecular sieve role, electrification of colloids, osmotic pressure of ions in CARP, and FO membrane structure were proposed to control the Ca-Alg production. Thus, the results provide further insights into Ca-Alg production via FO along with Ca2+ reverse osmosis.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Kai Tang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Cheng Chang
- Institute of Chemical Engineering, Chemical and Process Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Jia-Lin Han
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Feng Tian
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
5
|
Zeng W, Yu M, Lin J, Huang L, Li J, Lin S, Chen L. Electrospun chitosan nanofiber constructing superhigh-water-flux forward osmosis membrane. Int J Biol Macromol 2023; 226:833-839. [PMID: 36521706 DOI: 10.1016/j.ijbiomac.2022.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Forward osmosis (FO) technology exhibits great potential in seawater desalination and wastewater treatment due to its negligible energy consumption and high antifouling, however, the weak desalination capability, especially low water flux, remains challenging. Herein, a cost-effective and high-desalination-performance chitosan (CS)-based FO membrane is developed via coupling the electrospinning CS nanofibers and interfacial-polymerized polyamide (PA). The electrospun nanofibers construct the porous and hydrophilic CS layer with the large pore-diameter of ~274 nm and low thickness of ~10 μm, enabling the effective transport of water molecules, specifically, a superhigh water flux of 107.53 LMH at a low salt-water ratio of 0.24 g·L-1. In addition, such superior desalination performance of the as-prepared FO membrane is universal for the various salt species and concentrations. Our CS nanofiber-based membrane with the high separation capability of water-salt, desirable antibacterial activity, as well as the low cost, offers a roadmap toward the sustainable membrane materials.
Collapse
Affiliation(s)
- Wenchao Zeng
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Meiqiong Yu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, China; School of Ocean Science and Biochemistry Engineering, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Junkang Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Liulian Huang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Jianguo Li
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, China.
| | - Shan Lin
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, China.
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou 350002, China.
| |
Collapse
|
6
|
Piash KS, Sanyal O. Design Strategies for Forward Osmosis Membrane Substrates with Low Structural Parameters-A Review. MEMBRANES 2023; 13:73. [PMID: 36676880 PMCID: PMC9865366 DOI: 10.3390/membranes13010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
This article reviews the many innovative strategies that have been developed to specifically design the support layers of forward osmosis (FO) membranes. Forward osmosis (FO) is one of the most viable separation technologies to treat hypersaline wastewater, but its successful deployment requires the development of new membrane materials beyond existing desalination membranes. Specifically, designing the FO membrane support layers requires new engineering techniques to minimize the internal concentration polarization (ICP) effects encountered in cases of FO. In this paper, we have reviewed several such techniques developed by different research groups and summarized the membrane transport properties corresponding to each approach. An important transport parameter that helps to compare the various approaches is the so-called structural parameter (S-value); a low S-value typically corresponds to low ICP. Strategies such as electrospinning, solvent casting, and hollow fiber spinning, have been developed by prior researchers-all of them aimed at lowering this S-value. We also reviewed the quantitative methods described in the literature, to evaluate the separation properties of FO membranes. Lastly, we have highlighted some key research gaps, and provided suggestions for potential strategies that researchers could adopt to enable easy comparison of FO membranes.
Collapse
|
7
|
Li M, Yang Y, Zhu L, Wang G, Zeng Z, Xue L. Anti-fouling and highly permeable thin-film composite forward osmosis membranes based on the reactive polyvinylidene fluoride porous substrates. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Preparation and characterization of novel thin film composite forward osmosis membrane with halloysite nanotube interlayer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Nijmeijer K, Oymaci P, Lubach S, Borneman Z. Apple Juice, Manure and Whey Concentration with Forward Osmosis Using Electrospun Supported Thin-Film Composite Membranes. MEMBRANES 2022; 12:membranes12050456. [PMID: 35629782 PMCID: PMC9146530 DOI: 10.3390/membranes12050456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/22/2022]
Abstract
Forward osmosis (FO), using the osmotic pressure difference over a membrane to remove water, can treat highly foul streams and can reach high concentration factors. In this work, electrospun TFC membranes with a very porous open support (porosity: 82.3%; mean flow pore size: 2.9 µm), a dense PA-separating layer (thickness: 0.63 µm) covalently attached to the support and, at 0.29 g/L, having a very low specific reverse salt flux (4 to 12 times lower than commercial membranes) are developed, and their FO performance for the concentration of apple juice, manure and whey is evaluated. Apple juice is a low-fouling feed. Manure concentration fouls the membrane, but this results in only a small decrease in overall water flux. Whey concentration results in instantaneous, very severe fouling and flux decline (especially at high DS concentrations) due to protein salting-out effects in the boundary layer of the membrane, causing a high drag force resulting in lower water flux. For all streams, concentration factors of approximately two can be obtained, which is realistic for industrial applications.
Collapse
|
10
|
Forward osmosis to treat effluent of pulp and paper industry using urea draw-solute: Energy consumption, water flux, and solute flux. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Bucatariu F, Teodosiu C, Morosanu I, Fighir D, Ciobanu R, Petrila LM, Mihai M. An Overview on Composite Sorbents Based on Polyelectrolytes Used in Advanced Wastewater Treatment. Polymers (Basel) 2021; 13:3963. [PMID: 34833262 PMCID: PMC8625399 DOI: 10.3390/polym13223963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 01/19/2023] Open
Abstract
Advanced wastewater treatment processes are required to implement wastewater reuse in agriculture or industry, the efficient removal of targeted priority and emerging organic & inorganic pollutants being compulsory (due to their eco-toxicological and human health effects, bio-accumulative, and degradation characteristics). Various processes such as membrane separations, adsorption, advanced oxidation, filtration, disinfection may be used in combination with one or more conventional treatment stages, but technical and environmental criteria are important to assess their application. Natural and synthetic polyelectrolytes combined with some inorganic materials or other organic or inorganic polymers create new materials (composites) that are currently used in sorption of toxic pollutants. The recent developments on the synthesis and characterization of composites based on polyelectrolytes, divided according to their macroscopic shape-beads, core-shell, gels, nanofibers, membranes-are discussed, and a correlation of their actual structure and properties with the adsorption mechanisms and removal efficiencies of various pollutants in aqueous media (priority and emerging pollutants or other model pollutants) are presented.
Collapse
Affiliation(s)
- Florin Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Carmen Teodosiu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Irina Morosanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Daniela Fighir
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Ramona Ciobanu
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| | - Larisa-Maria Petrila
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
| | - Marcela Mihai
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (F.B.); (L.-M.P.)
- Department of Environmental Engineering and Management, “Gheorghe Asachi” Technical University of Iasi, 73 D. Mangeron Street, 700050 Iasi, Romania; (I.M.); (D.F.); (R.C.)
| |
Collapse
|
12
|
Jain H, Garg MC. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101561. [DOI: 10.1016/j.eti.2021.101561] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|