1
|
Sundar S, Singh B, Kaur A. Evaluating the synergistic effects of sesame cake powder and soy protein isolate on rheological, textural, nutritional, and phenolic profiles of high-moisture extrusion processed meat analogs. J Food Sci 2024; 89:9433-9455. [PMID: 39455073 DOI: 10.1111/1750-3841.17445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/04/2024] [Accepted: 09/17/2024] [Indexed: 10/28/2024]
Abstract
In this study, the high-moisture meat analogs (HmMAs) were developed by incorporating defatted sesame cake powder (DSP) in soy protein isolate (SyPI). The quality attributes of HmMA like visual appearance, specific mechanical energy (SME), mass flow rate (MFR), phenolic profile, textural and rheological properties were assessed after varying DSP concentrations (0%, 20%, 40%, and 60% w/w) and feed moisture (FM) levels (55% and 60%). The HmMA1 (derived solely from SyPI) exhibited higher hardness, chewiness, gumminess, cohesiveness, and springiness. The HmMA prepared from SyPI-DSP blends (HmMA2-8) demonstrated significant improvements in nutritional composition, and their visual characteristics indicated noticeable anisotropy. The interaction between SyPI and DSP influenced the quality of HmMA. The higher DSP concentration led to higher MFR and deeper curvatures of U-shaped structures, whereas lower SMS, textural and rheological properties. The DSP incorporation and 55% FM adjustments allowed mimicking meat cuts with thick fiber, influenced color, and proved advantageous in developing white meat analogs with higher free phenolics. The findings of the study suggest avenues for exploring DSP at a suitable level in SyPI for the development of better quality meat analogs.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Balwinder Singh
- P.G. Department of Botany, Khalsa College, Amritsar, Punjab, India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Liberal Â, Fernandes Â, Ferreira ICFR, Vivar-Quintana AM, Barros L. Effect of different physical pre-treatments on physicochemical and techno-functional properties, and on the antinutritional factors of lentils (Lens culinaris spp). Food Chem 2024; 450:139293. [PMID: 38631207 DOI: 10.1016/j.foodchem.2024.139293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Lentils have a valuable physicochemical profile, which can be affected by the presence of antinutrients that may impair the benefits arising from their consumption. Different treatments can be used to reduce these undesirable compounds, although they can also affect the general composition and behaviour of the lentils. Thus, the effect of different processing methods on the physicochemical and techno-functional properties, as well as on the antinutritional factors of different lentil varieties was studied. Phytic acid was eliminated during germination, while tannins and trypsin inhibitors are mostly affected by cooking. Functional properties were also altered by processing, these being dependent on the concentration of different nutrients in lentils. All the studied treatments affected the physicochemical profile of lentils and their functional properties. Cooking and germination appear to be the most effective in reducing antinutritional factors and improving the physicochemical profile of the lentils, meeting the current nutritional demands of today's society.
Collapse
Affiliation(s)
- Ângela Liberal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | | | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Zhang Y, Wang J, Tan H, Lu X, Wang D, Wei Q. Evaluation of Steaming and Drying of Black Sesame Seeds for Nine Cycles Using Grey-Correlation Analysis Based on Variation-Coefficient Weight. Molecules 2023; 28:5266. [PMID: 37446935 DOI: 10.3390/molecules28135266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to improve the steaming process of black sesame seeds. A comprehensive evaluation was conducted using the grey-correlation method based on the variation-coefficient weight to observe the treatments of normal-pressure (NPS) and high-pressure (HPS) steaming (with/without soaking in water) for nine cycles. Their effects on the contents of water, protein, fat, ash, melanin, sesamin, and sesamolin of black sesame seeds, as well as the sensory score of the black sesame pill, were determined. We found that with varied steaming methods and increased steaming cycles, the contents of the nutritional and functional components of black sesame seeds and the sensory score of the black sesame pill differed. The results of the variation-coefficient method showed that water, protein, fat, ash, melanin, sesamin, sesamolin, and sensory score had different effects on the quality of black sesame seeds with weighting factors of 34.4%, 5.3%, 12.5%, 11.3%, 13.9%, 11.3%, 7.8%, and 3.5%, respectively. The results of two-factor analysis of variance without repeated observations indicated that the grey-correlation degree of HPS was the largest among the different steaming treatments, and the following sequence was HPS after soaking in water (SNPS), NPS, and SNPS. There was no significant difference between NPS and SNPS (p < 0.05). Moreover, with increased cycles, the value of the grey-correlation degree increased. The comprehensive score of the procedure repeated nine times was significantly higher than other cycles (p < 0.05). The results of the grey-correlation degree and grade analysis showed that the best steaming process of black sesame seeds was HPS for nine cycles, followed by HPS for eight cycles and NPS after soaking in water (SNPS) for nine cycles. These findings could provide a scientific basis for replacing SNPS with HPS to simplify steaming and realize the parametric steaming of black sesame seeds, and thus, ensure the quality of black-sesame products.
Collapse
Affiliation(s)
- Yongqing Zhang
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Jiaojiao Wang
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Huihui Tan
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Xinyue Lu
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Deguo Wang
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| | - Quanzeng Wei
- Key Laboratory of Biomarker-Based Rapid Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China
| |
Collapse
|
4
|
Yüzer M, Gençcelep H. Sesame seed protein: Amino acid, functional, and physicochemical profiles. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an erect herbaceous annual plant with flat seeds. It is one of the oldest cultivated oilseed plants in the world, especially popular in Africa and Asia.
The present research objective was to describe a sesame protein isolate, i.e., its amino acid profile, functional and physicochemical properties, zeta potential, and hydrodynamic diameter. The surface charge and hydrodynamic diameter in aqueous solutions were obtained for standard sesame seeds, defatted sesame seeds, and the sesame protein isolate.
Defatted sesame seeds yielded the following optimal parameters: salt concentration – 0.6 M, pH – 7, iso-electric point (pI) – 4. The sesame protein isolate was rich in methionine content, which is rare in other plant proteins, but its lysine content was lower than in other isolates. The sesame protein isolate displayed almost identical zeta potential profiles with its pH. The decreasing pH increased the zeta values gradually from the lowest negative value to the highest positive value. The zeta potentials of standard and defatted sesame seeds at pH 7 were –23.53 and –17.30, respectively. The hydrodynamic diameter of the sesame protein isolate (0.33 μm) was smaller than that of sesame seeds (2.64 μm) and defatted sesame seeds (3.02 μm). The sesame protein isolate had a water holding capacity of 1.26 g/g and an oil holding capacity of 3.40 g/g. Its emulsifying properties looked as follows: emulsion capacity – 51.32%, emulsion stability – 49.50%, emulsion activity index – 12.86 m2/g, and emulsion stability index – 44.96 min, respectively. These values are suitable for the sesame protein isolate and are consistent with the literature.
The sesame protein isolate was a good source of protein (88.98%). Using sesame proteins as functional components can be an important basis for better knowledge of the relationship between electrical charge interactions in food matrices and the structure, stability, shelf life, texture, structural and functional properties of food. Research prospects include the effects of sesame protein isolates on various food systems.
Collapse
|
5
|
Adoko MC, Olum S, Elolu S, Ongeng D. Addition of Orange-Fleshed Sweet Potato and Iron-Rich Beans Improves Sensory, Nutritional and Physical Properties But Reduces Microbial Shelf Life of Cassava-Based Pancake ( Kabalagala) Designed for Children 2-5 Years Old. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1911899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Melas Cayrol Adoko
- Department of Food Science and Postharvest Technology, Gulu University, Gulu, Uganda
| | - Solomon Olum
- Department of Food Science and Postharvest Technology, Gulu University, Gulu, Uganda
| | - Samuel Elolu
- Department of Food Science and Postharvest Technology, Gulu University, Gulu, Uganda
| | - Duncan Ongeng
- Department of Food Science and Postharvest Technology, Gulu University, Gulu, Uganda
| |
Collapse
|
6
|
Idowu AO, Alashi AM, Nwachukwu ID, Fagbemi TN, Aluko RE. Functional properties of sesame (Sesamum indicum Linn) seed protein fractions. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00047-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
This work evaluated the functional properties of sesame protein fractions in order to determine their potential in food applications. Sesame seed protein fractions were prepared according to their solubility: water-soluble (albumin), salt-soluble (globulin), alkaline-soluble (glutelin) and ethanol-soluble (prolamin). Globulin was the most abundant fraction, consisting of 91% protein, followed by glutelin, albumin and prolamin in decreasing order. Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed polypeptides of sizes ≥20 kDa for albumin while glutelin and globulin had similar polypeptide sizes at 19, 85 and 100 kDa. Prolamin had polypeptide sizes 20, 40 and 100 kDa. The albumin and globulin fractions had higher intrinsic fluorescence intensity (FI) values than the glutelin. Albumin had a higher solubility (ranging from 80 to 100%) over a wide pH range when compared with the other fractions. Water holding capacity (g/g) reduced from 2.76 (glutelin) to 1.35 (prolamin) followed by 0.42 (globulin) and 0.08 (albumin). Oil holding capacity (g/g) reduced from: 4.13 (glutelin) to 2.57 (globulin) and 1.56, 1.50 for albumin and prolamin respectively. Gelling ability was stronger for prolamin and glutelin than albumin and globulin, while higher emulsion (p < 0.05) quality was obtained for prolamin and albumin than for glutelin and globulin.
Graphical abstract
Collapse
|
7
|
Cheng R, Liao X, Addou AM, Qian J, Wang S, Cheng Z, Wang L, Huang J. Effects of "nine steaming nine sun-drying" on proximate composition, oil properties and volatile compounds of black sesame seeds. Food Chem 2020; 344:128577. [PMID: 33223293 DOI: 10.1016/j.foodchem.2020.128577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022]
Abstract
Black sesame seeds (BSS) were processed by nine cycles of steaming and sun-drying, and the chemistry of their resulting products studied. That is, the shell color and structure, proximate composition, oil properties and volatile compounds of raw BSS were determined and compared with processed BSS. Various levels of shell color change and structure damage were observed. The proximate composition also differed, whereas the relative proportion of fatty acids and oil properties were unchanged. SPME-GCMS analysis revealed that aldehydes, hydrocarbons and alcohols were the main volatile compounds. And compared with raw BSS, four volatile substances were newly detected in the processed BSS. Principal component analysis (PCA) displayed the overall difference between samples and showed that repeated steaming and sun-drying process had a significant impact on the chemical composition of BSS.
Collapse
Affiliation(s)
- Runqing Cheng
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Xianyan Liao
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Amira Mama Addou
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China; School of Environmental and Chemical Engineering, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Jiana Qian
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Shanshan Wang
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Zhuo Cheng
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China.
| | - Junyi Huang
- School of Life Sciences, Shanghai University, No. 381 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|