1
|
Létourneau V, Gagné MJ, Vyskocil JM, Brochu V, Robitaille K, Gauthier M, Brassard J, Duchaine C. Hunting for a viral proxy in bioaerosols of swine buildings using molecular detection and metagenomics. J Environ Sci (China) 2025; 148:69-78. [PMID: 39095200 DOI: 10.1016/j.jes.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/04/2024]
Abstract
There are limited biosecurity measures directed at preventing airborne transmission of viruses in swine. The effectiveness of dust mitigation strategies such as oil sprinkling, to decrease risk of airborne virus transmission are unknown. Metagenomics and qPCR for common fecal viruses were used to hunt for a ubiquitous virus to serve as a proxy when evaluating the efficiency of mitigation strategies against airborne viral infectious agents. Air particles were collected from swine buildings using high-volume air samplers. Extracted DNA and RNA were used to perform specific RT-qPCR and qPCR and analyzed by high-throughput sequencing. Porcine astroviruses group 2 were common (from 102 to 105 genomic copies per cubic meter of air or gc/m3, 93% positivity) while no norovirus genogroup II was recovered from air samples. Porcine torque teno sus virus were detected by qPCR in low concentrations (from 101 to 102 gc/m3, 47% positivity). Among the identified viral families by metagenomics analysis, Herelleviridae, Microviridae, Myoviridae, Podoviridae, and Siphoviridae were dominant. The phage vB_AviM_AVP of Aerococcus was present in all air samples and a newly designed qPCR revealed between 101 and 105 gc/m3 among the samples taken for the present study (97% positivity) and banked samples from 5- and 15-year old studies (89% positivity). According to the present study, both the porcine astrovirus group 2 and the phage vB_AviM_AVP of Aerococcus could be proxy for airborne viruses of swine buildings.
Collapse
Affiliation(s)
- Valérie Létourneau
- Quebec Heart and Lung Institute Research Centre - Université Laval, 2725 Chemin Sainte-Foy, Quebec, G1V 4G5, Canada
| | - Marie-Josée Gagné
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, Canada
| | - Jonathan M Vyskocil
- Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada
| | - Vincent Brochu
- Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada
| | - Kim Robitaille
- Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada
| | - Martin Gauthier
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, Canada
| | - Julie Brassard
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, J2S 8E3, Canada; The Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine of Université de Montréal, 3200 Rue Sicotte, Saint-Hyacinthe, J2S 2M2, Canada
| | - Caroline Duchaine
- Quebec Heart and Lung Institute Research Centre - Université Laval, 2725 Chemin Sainte-Foy, Quebec, G1V 4G5, Canada; Department of Biochemistry, Microbiology, and Bio-informatics, Faculty of Science and Engineering, Université Laval, 1045 Avenue de la Médecine, Quebec, G1V 0A6, Canada.
| |
Collapse
|
2
|
Wasisto HS, Anzinger S, Acanfora G, Farrel A, Sabatini V, Grimoldi E, Marelli V, Ovsiannikov N, Tkachuk K, Tosolini G, Lucignano C, Mietta M, Zhang G, Fueldner M, Peiner E. Acoustically semitransparent nanofibrous meshes appraised by high signal-to-noise-ratio MEMS microphones. COMMUNICATIONS ENGINEERING 2024; 3:136. [PMID: 39313529 PMCID: PMC11420236 DOI: 10.1038/s44172-024-00283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Microelectromechanical system-based microphones demand high ingress protection levels with regard to their use in harsh environment. Here, we develop environmental protective components comprising polyimide nanofibers combined onto polyether ether ketone fabric meshes and subsequently appraise their impact on the electroacoustic properties of high signal-to-noise-ratio microelectromechanical system-based microphones via industry-standard characterizations and theoretical simulations. Being placed directly on top of the microphone sound port, the nanofiber mesh die-cut parts with an inner diameter of 1.4 mm result in signal-to-noise-ratio and insertion losses of (2.05 ± 0.16) dB(A) and (0.30 ± 0.11) dBFS, respectively, in electroacoustic measurements. Hence, a high signal-to-noise-ratio value of (70.05 ± 0.17) dB(A) can be maintained by the mesh-protected microphone system. Due to their high temperature stability, acoustic performance, environmental robustness, and industry-scale batch production, these nanofibrous meshes reveal high potential to be practically implemented in high-market-volume applications of packaged microelectromechanical system-based microphones.
Collapse
Affiliation(s)
| | | | - Giovanni Acanfora
- Infineon Technologies AG, Am Campeon 1-15, Neubiberg, Germany
- Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Str. 66, Braunschweig, Germany
| | - Aloysius Farrel
- Infineon Technologies AG, Am Campeon 1-15, Neubiberg, Germany
- TUM School of Natural Sciences, Technische Universität München, James-Franck-Str. 1, Garching, Germany
| | | | | | - Vasco Marelli
- SAATI SPA, Via Milano 14, Appiano Gentile, Como, Italy
| | - Nikita Ovsiannikov
- Infineon Technologies AG, Am Campeon 1-15, Neubiberg, Germany
- TUM School of Computation, Information, and Technology (CIT), Technische Universität München, Arcisstraße 21, München, Germany
| | | | | | | | - Marco Mietta
- SAATI SPA, Via Milano 14, Appiano Gentile, Como, Italy
| | - Guangzhao Zhang
- Infineon Technologies AG, Am Campeon 1-15, Neubiberg, Germany
| | - Marc Fueldner
- Infineon Technologies AG, Am Campeon 1-15, Neubiberg, Germany
| | - Erwin Peiner
- Institute of Semiconductor Technology (IHT) and Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, Hans-Sommer-Str. 66, Braunschweig, Germany.
| |
Collapse
|
3
|
Ouyang H, Wang L, Sapkota D, Yang M, Morán J, Li L, Olson BA, Schwartz M, Hogan CJ, Torremorell M. Control technologies to prevent aerosol-based disease transmission in animal agriculture production settings: a review of established and emerging approaches. Front Vet Sci 2023; 10:1291312. [PMID: 38033641 PMCID: PMC10682736 DOI: 10.3389/fvets.2023.1291312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Transmission of infectious agents via aerosols is an ever-present concern in animal agriculture production settings, as the aerosol route to disease transmission can lead to difficult-to-control and costly diseases, such as porcine respiratory and reproductive syndrome virus and influenza A virus. It is increasingly necessary to implement control technologies to mitigate aerosol-based disease transmission. Here, we review currently utilized and prospective future aerosol control technologies to collect and potentially inactivate pathogens in aerosols, with an emphasis on technologies that can be incorporated into mechanically driven (forced air) ventilation systems to prevent aerosol-based disease spread from facility to facility. Broadly, we find that control technologies can be grouped into three categories: (1) currently implemented technologies; (2) scaled technologies used in industrial and medical settings; and (3) emerging technologies. Category (1) solely consists of fibrous filter media, which have been demonstrated to reduce the spread of PRRSV between swine production facilities. We review the mechanisms by which filters function and are rated (minimum efficiency reporting values). Category (2) consists of electrostatic precipitators (ESPs), used industrially to collect aerosol particles in higher flow rate systems, and ultraviolet C (UV-C) systems, used in medical settings to inactivate pathogens. Finally, category (3) consists of a variety of technologies, including ionization-based systems, microwaves, and those generating reactive oxygen species, often with the goal of pathogen inactivation in aerosols. As such technologies are typically first tested through varied means at the laboratory scale, we additionally review control technology testing techniques at various stages of development, from laboratory studies to field demonstration, and in doing so, suggest uniform testing and report standards are needed. Testing standards should consider the cost-benefit of implementing the technologies applicable to the livestock species of interest. Finally, we examine economic models for implementing aerosol control technologies, defining the collected infectious particles per unit energy demand.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - Lan Wang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Deepak Sapkota
- Department of Mechanical Engineering, University of Texas-Dallas, Richardson, TX, United States
| | - My Yang
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| | - José Morán
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Li Li
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Bernard A. Olson
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mark Schwartz
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
- Schwartz Farms, Sleepy Eye, MN, United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Montserrat Torremorell
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
4
|
Sheehan MJ, Vosburgh DJH, O'Shaughnessy PT, Park JH, Sotelo C. Direct-reading instruments for aerosols: A review for occupational health and safety professionals part 2: Applications. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:706-729. [PMID: 36197433 DOI: 10.1080/15459624.2022.2132256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Direct reading instruments (DRIs) for aerosols have been used in industrial hygiene practice for many years, but their potential has not been fully realized by many occupational health and safety professionals. Although some DRIs quantify other metrics, this article will primarily focus on DRIs that measure aerosol number, size, or mass. This review addresses three applications of aerosol DRIs that occupational health and safety professionals can use to discern, characterize, and document exposure conditions and resolve aerosol-related problems in the workplace. The most common application of aerosol DRIs is the evaluation of engineering controls. Examples are provided for many types of workplaces and situations including construction, agriculture, mining, conventional manufacturing, advanced manufacturing (nanoparticle technology and additive manufacturing), and non-industrial sites. Aerosol DRIs can help identify the effectiveness of existing controls and, as needed, develop new strategies to reduce potential aerosol exposures. Aerosol concentration mapping (ACM) using DRI data can focus attention on emission sources in the workplace spatially illustrate the effectiveness of controls and constructively convey concerns to management and workers. Examples and good practices of ACM are included. Video Exposure Monitoring (VEM) is another useful technique in which video photography is synced with the concentration output of an aerosol DRI. This combination allows the occupational health and safety professional to see what tasks, environmental situations, and/or worker actions contribute to aerosol concentration and potential exposure. VEM can help identify factors responsible for temporal variations in concentration. VEM can assist with training, engage workers, convince managers about necessary remedial actions, and provide for continuous improvement of the workplace environment. Although using DRIs for control evaluation, ACM and VEM can be time-consuming, the resulting information can provide useful data to prompt needed action by employers and employees. Other barriers to adoption include privacy and security issues in some worksites. This review seeks to provide information so occupational health and safety professionals can better understand and effectively use these powerful applications of aerosol DRIs.
Collapse
Affiliation(s)
- Maura J Sheehan
- Department of Health, West Chester University, West Chester, Pennsylvania
| | - Donna J H Vosburgh
- Department of Occupational & Environmental Safety & Health, University of Wisconsin-Whitewater, Whitewater, Wisconsin
| | | | - Jae Hong Park
- School of Health Sciences, Purdue University, West Lafayette, Indiana
| | | |
Collapse
|
5
|
Susihono W, Gede Adiatmika IP. Assessment of inhaled dust by workers and suspended dust for pollution control change and ergonomic intervention in metal casting industry: A cross-sectional study. Heliyon 2020; 6:e04067. [PMID: 32509992 PMCID: PMC7264714 DOI: 10.1016/j.heliyon.2020.e04067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/20/2020] [Accepted: 05/22/2020] [Indexed: 01/15/2023] Open
Abstract
Metal casting industry including is an industry which produce high dust pollution (fly ash). Improvements in the form of ergonomic interventions have been carried out by many companies, but do not guarantee all parameters run well. The total indoor suspended dust (TSP) measurement results are not enough to guarantee healthy working conditions. Additional assessment of workers' inhaled dust is needed to change pollution control and work improvement to ergonomics. The design of this study is Cross Sectional Study. Research subjects numbered 84 people. All samples met the inclusion criteria. Measurement results of Characteristic of research subject, Working Environment Conditions, Exposition of dust inhaled by workers, Total Indoor Suspended Dust of the Company (p > 0.05). Found critical hours of workers exposed to dust (fly ash), starting from 4 h after working (Department of Process Cement, Department of Black Sand) and 2 h after working for the Department of Loam. Critical hours exposed to dust (fly ash) used as the basis for company management and regulators to take new policies in controlling fly ash pollution and ergonomic interventions. Ergonomic interventions can be carried out by activating the dust collector at critical hours, applying active resting hours at critical hours and conditioning workers to breathe fresh air. The impact of this ergonomic intervention is a decrease in musculoskeletal complaints by 25.27%, reduction in boredom 25.01%, and an increase in job satisfaction 38.46%.
Collapse
Affiliation(s)
- Wahyu Susihono
- Industrial Engineering Department, Faculty of Engineering, University of Sultan Ageng Tirtayasa, Banten, Indonesia
| | | |
Collapse
|
6
|
Anthony TR, Yang AY, Peters TM. Assessment of Interventions to Improve Air Quality in a Livestock Building. J Agric Saf Health 2018; 23:247-263. [PMID: 29140643 DOI: 10.13031/jash.12426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examined the effectiveness of engineering controls to reduce contaminant concentrations in a swine farrowing room during winter in the U.S. Midwest. Over two winters, changes in air quality were evaluated following installation of a 1700 m3 h-1 (1000 cfm) recirculating ventilation system to provide 5.4 air exchanges per hour. This system incorporated one of two readily available dust control systems, one based on filtration and the other on cyclonic treatment. A second treatment evaluated reductions in carbon dioxide (CO2) associated with replacement of standard, unvented gas-fired heaters with new vented heaters, installed between the two winter test periods. The concentrations of carbon monoxide and hydrogen sulfide were negligible in the test room. Although concentrations of ammonia increased over each winter test period, the increase was unrelated to increased air movement from the new recirculating ventilation system. The dust concentrations were significantly reduced by the ventilation system for both inhalable dust (23% to 44% with filtration, 33% with cyclone) and respirable dust (32% with filtration, 20% with cyclone), significant (p 0.024) for all except respirable dust using the cyclone (p = 0.141). The filtration unit is recommended to improve livestock building air quality because it was more effective than the cyclone unit at reducing respirable dust. Carbon dioxide concentrations were significantly lower with vented heaters (mean = 1400 ppm, SD = 330 ppm) compared to unvented heaters (mean = 2480 ppm, SD = 160 ppm). A 940 ppm reduction in CO2 was attributed to the use of the vented heater, after accounting for differences in outdoor temperatures and animal housing over both test periods. The benefits of readily available technology to significantly reduce concentrations of dust and CO2 demonstrates useful control options to improve air quality in swine buildings.
Collapse
|
7
|
Park JH, Peters TM, Altmaier R, Jones SM, Gassman R, Anthony TR. Simulation of air quality and operational cost to ventilate swine farrowing facilities in Midwest U.S. during winter. TRANSACTIONS OF THE ASABE 2017; 60:465-477. [PMID: 28775911 PMCID: PMC5536187 DOI: 10.13031/trans.11784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have developed a time-dependent simulation model to estimate in-room concentrations of multiple contaminants [ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO) and dust] as a function of increased ventilation with filtered recirculation for swine farrowing facilities. Energy and mass balance equations were used to simulate the indoor air quality (IAQ) and operational cost for a variety of ventilation conditions over a 3-month winter period for a facility located in the Midwest U.S., using simplified and real-time production parameters, comparing results to field data. A revised model was improved by minimizing the sum of squared errors (SSE) between modeled and measured NH3 and CO2. After optimizing NH3 and CO2, other IAQ results from the simulation were compared to field measurements using linear regression. For NH3, the coefficient of determination (R2) for simulation results and field measurements improved from 0.02 with the original model to 0.37 with the new model. For CO2, the R2 for simulation results and field measurements was 0.49 with the new model. When the makeup air was matched to hallway air CO2 concentrations (1,500 ppm), simulation results showed the smallest SSE. With the new model, the R2 for other contaminants were 0.34 for inhalable dust, 0.36 for respirable dust, and 0.26 for CO. Operation of the air cleaner decreased inhalable dust by 35% and respirable dust concentrations by 33%, while having no effect on NH3, CO2, in agreement with field data, and increasing operational cost by $860 (58%) for the three-month period.
Collapse
Affiliation(s)
- Jae Hong Park
- Department of Occupational and Environmental Health, University of
Iowa, USA
- School of Health Sciences, Purdue University, USA
| | - Thomas M. Peters
- Department of Occupational and Environmental Health, University of
Iowa, USA
| | - Ralph Altmaier
- Department of Occupational and Environmental Health, University of
Iowa, USA
| | - Samuel M. Jones
- Department of Occupational and Environmental Health, University of
Iowa, USA
| | - Richard Gassman
- Department of Occupational and Environmental Health, University of
Iowa, USA
| | - T. Renée Anthony
- Department of Occupational and Environmental Health, University of
Iowa, USA
| |
Collapse
|