1
|
Gomes KT, Prasad PR, Sandhu JS, Kumar A, Kumar NAN, Shridhar NB, Bisht B, Paul MK. Decellularization techniques: unveiling the blueprint for tracheal tissue engineering. Front Bioeng Biotechnol 2025; 13:1518905. [PMID: 40092377 PMCID: PMC11906413 DOI: 10.3389/fbioe.2025.1518905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Certain congenital or acquired diseases and defects such as tracheo-oesophageal fistula, tracheomalacia, tracheal stenosis, airway ischemia, infections, and tumours can cause damage to the trachea. Treatments available do not offer any permanent solutions. Moreover, long-segment defects in the trachea have no available surgical treatments. Tissue engineering has gained popularity in current regenerative medicine as a promising approach to bridge this gap. Among the various tissue engineering techniques, decellularization is a widely used approach that removes the cellular and nuclear contents from the tissue while preserving the native extracellular matrix components. The decellularized scaffolds exhibit significantly lower immunogenicity and retain the essential biomechanical and proangiogenic properties of native tissue, creating a foundation for trachea regeneration. The present review provides an overview of trachea decellularization advancements, exploring how recellularization approaches can be optimized by using various stem cells and tissue-specific cells to restore the scaffold's structure and function. We examine critical factors such as mechanical properties, revascularization, and immunogenicity involved in the transplantation of tissue-engineered grafts.
Collapse
Affiliation(s)
- Keisha T Gomes
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Palla Ranga Prasad
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jagnoor Singh Sandhu
- Central Animal Research Facility, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
- Center for Animal Research, Ethics and Training (CARET), Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ashwini Kumar
- Department of Forensic Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Naveena A N Kumar
- Department of Surgical Oncology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N B Shridhar
- Department of Pharmacology and Toxicology, Obscure Disease Research Center, Veterinary College Campus, Shivamogga, Karnataka, India
| | - Bharti Bisht
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
2
|
dos Santos AC, de Andrade LMB, Candelária RAQ, de Carvalho JC, Valbão MCM, Barreto RDSN, de Faria MD, Buchaim RL, Buchaim DV, Miglino MA. From Cartilage to Matrix: Protocols for the Decellularization of Porcine Auricular Cartilage. Bioengineering (Basel) 2025; 12:52. [PMID: 39851326 PMCID: PMC11759173 DOI: 10.3390/bioengineering12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/26/2025] Open
Abstract
The shortage of tissues and damaged organs led to the development of tissue engineering. Biological scaffolds, created from the extracellular matrix (ECM) of organs and tissues, have emerged as a promising solution for transplants. The ECM of decellularized auricular cartilage is a potential tool for producing ideal scaffolds for the recellularization and implantation of new tissue in damaged areas. In order to be classified as an ideal scaffold, it must be acellular, preserving its proteins and physical characteristics necessary for cell adhesion. This study aimed to develop a decellularization protocol for pig ear cartilage and evaluate the integrity of the ECM. Four tests were performed using different methods and protocols, with four pig ears from which the skin and subcutaneous tissue were removed, leaving only the cartilage. The most efficient protocol was the combination of trypsin with a sodium hydroxide solution (0.2 N) and SDS (1%) without altering the ECM conformation or the collagen architecture. In conclusion, it was observed that auricular cartilage is difficult to decellularize, influenced by material size, exposure time, and the composition of the solution. Freezing and thawing did not affect the procedure. The sample thickness significantly impacted the decellularization time.
Collapse
Affiliation(s)
- Ana Caroline dos Santos
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Livia Maria Barbosa de Andrade
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Raí André Querino Candelária
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | - Juliana Casanovas de Carvalho
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
| | | | - Rodrigo da Silva Nunes Barreto
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, Brazil
| | - Marcelo Domingues de Faria
- Department of Animal Anatomy, Agricultural Sciences—Federal University of Vale do São Francisco (UNIVASF), Petrolina 56300-000, Brazil;
| | - Rogerio Leone Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | - Daniela Vieira Buchaim
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), São Paulo 05508-270, Brazil; (A.C.d.S.); (L.M.B.d.A.); (R.A.Q.C.); (J.C.d.C.); (R.d.S.N.B.); (R.L.B.); (D.V.B.)
- Medical School, University Center of Adamantina (FAI), Adamantina 17800-000, Brazil
| | - Maria Angelica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| |
Collapse
|
3
|
Stoian A, Adil A, Biniazan F, Haykal S. Two Decades of Advances and Limitations in Organ Recellularization. Curr Issues Mol Biol 2024; 46:9179-9214. [PMID: 39194760 DOI: 10.3390/cimb46080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The recellularization of tissues after decellularization is a relatively new technology in the field of tissue engineering (TE). Decellularization involves removing cells from a tissue or organ, leaving only the extracellular matrix (ECM). This can then be recellularized with new cells to create functional tissues or organs. The first significant mention of recellularization in decellularized tissues can be traced to research conducted in the early 2000s. One of the landmark studies in this field was published in 2008 by Ott, where researchers demonstrated the recellularization of a decellularized rat heart with cardiac cells, resulting in a functional organ capable of contraction. Since then, other important studies have been published. These studies paved the way for the widespread application of recellularization in TE, demonstrating the potential of decellularized ECM to serve as a scaffold for regenerating functional tissues. Thus, although the concept of recellularization was initially explored in previous decades, these studies from the 2000s marked a major turning point in the development and practical application of the technology for the recellularization of decellularized tissues. The article reviews the historical advances and limitations in organ recellularization in TE over the last two decades.
Collapse
Affiliation(s)
- Alina Stoian
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Aisha Adil
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1, Canada
| | - Felor Biniazan
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Reconstructive Oncology, Division of Plastic and Reconstructive Surgery, Smilow Cancer Hospital, Yale, New Haven, CT 06519, USA
| |
Collapse
|
4
|
Manning JC, Boza JM, Cesarman E, Erickson D. Rapid, equipment-free extraction of DNA from skin biopsies for point-of-care diagnostics. Sci Rep 2024; 14:13782. [PMID: 38877073 PMCID: PMC11178891 DOI: 10.1038/s41598-024-64533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Kaposi's sarcoma (KS) is a cancer affecting skin and internal organs for which the Kaposi's sarcoma associated herpesvirus (KSHV) is a necessary cause. Previous work has pursued KS diagnosis by quantifying KSHV DNA in skin biopsies using a point-of-care (POC) device which performs quantitative loop-mediated isothermal amplification (LAMP). These previous studies revealed that extracting DNA from patient biopsies was the rate limiting step in an otherwise rapid process. In this study, a simplified, POC-compatible alkaline DNA extraction, ColdSHOT, was optimized for 0.75 mm human skin punch biopsies. The optimized ColdSHOT extraction consistently produced 40,000+ copies of DNA per 5 µl reaction from 3 mg samples-a yield comparable to standard spin column extractions-within 1 h without significant equipment. The DNA yield was estimated sufficient for KSHV detection from KS-positive patient biopsies, and the LAMP assay was not affected by non-target tissue in the unpurified samples. Furthermore, the yields achieved via ColdSHOT were robust to sample storage in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer prior to DNA extraction, and the DNA sample was stable after extraction. The results presented in this study indicate that the ColdSHOT DNA extraction could be implemented to simplify and accelerate the LAMP-based diagnosis of Kaposi's sarcoma using submillimeter biopsy samples.
Collapse
Affiliation(s)
- Jason Cade Manning
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Juan Manuel Boza
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Ethel Cesarman
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA.
- Cornell University, 369 Upson Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Evrard R, Manon J, Rafferty C, Fieve L, Cornu O, Kirchgesner T, Lecouvet FE, Schubert T, Lengele B. Vascular study of decellularized porcine long bones: Characterization of a tissue engineering model. Bone 2024; 182:117073. [PMID: 38493932 DOI: 10.1016/j.bone.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Massive bone allografts enable the reconstruction of critical bone defects in numerous conditions (e.g. tumoral, infection or trauma). Unfortunately, their biological integration remains insufficient and the reconstruction may suffer from several postoperative complications. Perfusion-decellularization emerges as a tissue engineering potential solution to enhance osseointegration. Therefore, an intrinsic vascular study of this novel tissue engineering tool becomes essential to understand its efficacy and applicability. MATERIAL AND METHODS 32 porcine long bones (humeri and femurs) were used to assess the quality of their vascular network prior and after undergoing a perfusion-decellularization protocol. 12 paired bones were used to assess the vascular matrix prior (N = 6) and after our protocol (N = 6) by immunohistochemistry. Collagen IV, Von Willebrand factor and CD31 were targeted then quantified. The medullary macroscopic vascular network was evaluated with 12 bones: 6 were decellularized and the other 6 were, as control, not treated. All 12 underwent a contrast-agent injection through the nutrient artery prior an angio CT-scan acquisition. The images were processed and the length of medullary vessels filled with contrast agent were measured on angiographic cT images obtained in control and decellularized bones by 4 independent observers to evaluate the vascular network preservation. The microscopic cortical vascular network was evaluated on 8 bones: 4 control and 4 decellularized. After injection of gelatinous fluorochrome mixture (calcein green), non-decalcified fluoroscopic microscopy was performed in order to assess the perfusion quality of cortical vascular lacunae. RESULTS The continuity of the microscopic vascular network was assessed with Collagen IV immunohistochemistry (p-value = 0.805) while the decellularization quality was observed through CD31 and Von Willebrand factor immunohistochemistry (p-values <0.001). The macroscopic vascular network was severely impaired after perfusion-decellularization; nutrient arteries were still patent but the amount of medullary vascular channels measured was significantly higher in the control group compared to the decellularized group (p-value <0.001). On average, the observers show good agreement on these results, except in the decellularized group where more inter-observer discrepancies were observed. The microscopic vascular network was observed with green fluoroscopic signal in almost every canals and lacunae of the bone cortices, in three different bone locations (proximal metaphysis, diaphysis and distal metaphysis). CONCLUSION Despite the aggressiveness of the decellularization protocol on medullary vessels, total porcine long bones decellularized by perfusion retain an acellular cortical microvascular network. By injection through the intact nutrient arteries, this latter vascular network can still be used as a total bone infusion access for bone tissue engineering in order to enhance massive bone allografts prior implantation.
Collapse
Affiliation(s)
- R Evrard
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 52-B1.52.04, 1200 Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, UCLouvain, Avenue Hippocrate 10, 1200 Bruxelles, Belgium.
| | - J Manon
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 52-B1.52.04, 1200 Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, UCLouvain, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - C Rafferty
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, UCLouvain, Avenue E. Mounier, 52-B1.52.04, 1200 Bruxelles, Belgium
| | - L Fieve
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, UCLouvain, Avenue E. Mounier, 52-B1.52.04, 1200 Bruxelles, Belgium
| | - O Cornu
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 52-B1.52.04, 1200 Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, UCLouvain, Avenue Hippocrate 10, 1200 Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - T Kirchgesner
- Département d'Imagerie Médicale, Institut de Recherche Expérimentale et Clinique (Pôle IMAG), Cliniques Universitaires Saint-Luc, UCLouvain, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - F E Lecouvet
- Département d'Imagerie Médicale, Institut de Recherche Expérimentale et Clinique (Pôle IMAG), Cliniques Universitaires Saint-Luc, UCLouvain, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - T Schubert
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain (UCLouvain), Avenue E. Mounier, 52-B1.52.04, 1200 Bruxelles, Belgium; Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, UCLouvain, Avenue Hippocrate 10, 1200 Bruxelles, Belgium; Unité de Thérapie Tissulaire et Cellulaire de l'Appareil Locomoteur, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| | - B Lengele
- Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, UCLouvain, Avenue E. Mounier, 52-B1.52.04, 1200 Bruxelles, Belgium; Service de Chirurgie Plastique, Reconstructrice et Esthétique, Cliniques Universitaires Saint-Luc, UCLouvain, Avenue Hippocrate 10, 1200 Bruxelles, Belgium
| |
Collapse
|
6
|
Evrard R, Manon J, Maistriaux L, Rafferty C, Fieve L, Heller U, Cornu O, Gianello P, Schubert T, Lengele B. Decellularization of Massive Bone Allografts By Perfusion: A New Protocol for Tissue Engineering. Tissue Eng Part A 2024; 30:31-44. [PMID: 37698880 DOI: 10.1089/ten.tea.2023.0182] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
In terms of large bone defect reconstructions, massive bone allografts may sometimes be the only solution. However, they are still burdened with a high postoperative complication rate. Our hypothesis is that the immunogenicity of residual cells in the graft is involved in this issue. Decellularization by perfusion might therefore be the answer to process and create more biologically effective massive bone allografts. Seventy-two porcine bones were used to characterize the efficiency of our sodium hydroxide-based decellularization protocol. A sequence of solvent perfusion through each nutrient artery was set up to ensure the complete decellularization of whole long bones. Qualitative (histology and immunohistochemistry [IHC]) and quantitative (fluoroscopic absorbance and enzyme-linked immunosorbent assay) evaluations were performed to assess the decellularization and the preservation of the extracellular matrix in the bone grafts. Cytotoxicity and compatibility were also tested. Comparatively to nontreated bones, our experiments showed a very high decellularization quality, demonstrating that perfusion is mandatory to achieve an entire decellularization. Moreover, results showed a good preservation of the bone composition and microarchitecture, Haversian systems and vascular network included. This protocol reduces the human leukocyte antigen antigenic load of the graft by >50%. The majority of measured growth factors is still present in the same amount in the decellularized bones compared to the nontreated bones. Histology and IHC show that the bones were cell compatible, noncytotoxic, and capable of inducing osteoblastic differentiation of mesenchymal stem cells. Our decellularization/perfusion protocol allowed to create decellularized long bone graft models, thanks to their inner vascular network, ready for in vivo implantation or to be further used as seeding matrices.
Collapse
Affiliation(s)
- Robin Evrard
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Julie Manon
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Louis Maistriaux
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Bruxelles, Belgique
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Chiara Rafferty
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Lies Fieve
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
| | - Ugo Heller
- Centre Hospitalo-Universitaire Necker Enfants Malades, Service de Chirurgie Maxillo-Faciale et Reconstructrice, Paris, France
| | - Olivier Cornu
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Pierre Gianello
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Bruxelles, Belgique
| | - Thomas Schubert
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Neuro Musculo-Skeletal Lab, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Orthopédique et Traumatologique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| | - Benoit Lengele
- Secteur des Sciences de la Santé, Institut de Recherche Expérimentale et Clinique, Pôle Morphologie, Université Catholique de Louvain, Bruxelles, Belgique
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Cliniques Universitaires Saint-Luc, Bruxelles, Belgique
| |
Collapse
|
7
|
Lee KW, Chung K, Nam DH, Jung M, Kim SH, Kim HG. Decellularized allogeneic cartilage paste with human costal cartilage and crosslinked hyaluronic acid-carboxymethyl cellulose carrier augments microfracture for improved articular cartilage repair. Acta Biomater 2023; 172:297-308. [PMID: 37813156 DOI: 10.1016/j.actbio.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Articular cartilage lacks natural healing abilities and necessitates surgical treatments for injuries. While microfracture (MF) is a primary surgical approach, it often results in the formation of unstable fibrocartilage. Delivering hyaline cartilage directly to defects poses challenges due to the limited availability of autologous cartilage and difficulties associated with allogeneic cartilage delivery. We developed a decellularized allogeneic cartilage paste (DACP) using human costal cartilage mixed with a crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC) carrier. The decellularized allogeneic cartilage preserved the extracellular matrix and the nanostructure of native hyaline cartilage. The crosslinked HA-CMC carrier provided shape retention and moldability. In vitro studies confirmed that DACP did not cause cytotoxicity and promoted migration, proliferation, and chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. After 6 months of implantation in rabbit knee osteochondral defects, DACP combined with MF outperformed MF alone, demonstrating improved gait performance, defect filling, morphology, extracellular matrix deposition, and biomechanical properties similar to native cartilage. Thus, DACP offers a safe and effective method for articular cartilage repair, representing a promising augmentation to MF. STATEMENT OF SIGNIFICANCE: Directly delivering hyaline cartilage to repair articular cartilage defects is an ideal treatment. However, current allogeneic cartilage products face delivery challenges. In this study, we developed a decellularized allogeneic cartilage paste (DACP) by mixing human costal cartilage with crosslinked hyaluronic acid (HA)-carboxymethyl cellulose (CMC). DACP preserves extracellular matrix components and nanostructures similar to native cartilage, with HA-CMC ensuring shape retention and moldability. Our study demonstrates improved cartilage repair by combining DACP with microfracture, compared to microfracture alone, in rabbit knee defects over 6 months. This is the first report showing better articular cartilage repair using decellularized allogeneic cartilage with microfracture, without the need for exogenous cells or bioactive substances.
Collapse
Affiliation(s)
- Kee-Won Lee
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea
| | - Kwangho Chung
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Dong-Hyun Nam
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea
| | - Min Jung
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hwan Kim
- Arthroscopy and Joint Research Institute, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyung-Gu Kim
- R&D Center, L&C BIO Co., Ltd., 82, Naruteo-ro, Seocho-gu, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Cai D, Weng W. Development potential of extracellular matrix hydrogels as hemostatic materials. Front Bioeng Biotechnol 2023; 11:1187474. [PMID: 37383519 PMCID: PMC10294235 DOI: 10.3389/fbioe.2023.1187474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
The entry of subcutaneous extracellular matrix proteins into the circulation is a key step in hemostasis initiation after vascular injury. However, in cases of severe trauma, extracellular matrix proteins are unable to cover the wound, making it difficult to effectively initiate hemostasis and resulting in a series of bleeding events. Acellular-treated extracellular matrix (ECM) hydrogels are widely used in regenerative medicine and can effectively promote tissue repair due to their high mimic nature and excellent biocompatibility. ECM hydrogels contain high concentrations of extracellular matrix proteins, including collagen, fibronectin, and laminin, which can simulate subcutaneous extracellular matrix components and participate in the hemostatic process. Therefore, it has unique advantages as a hemostatic material. This paper first reviewed the preparation, composition and structure of extracellular hydrogels, as well as their mechanical properties and safety, and then analyzed the hemostatic mechanism of the hydrogels to provide a reference for the application and research, and development of ECM hydrogels in the field of hemostasis.
Collapse
|
9
|
Kuşoğlu A, Yangın K, Özkan SN, Sarıca S, Örnek D, Solcan N, Karaoğlu İC, Kızılel S, Bulutay P, Fırat P, Erus S, Tanju S, Dilege Ş, Öztürk E. Different Decellularization Methods in Bovine Lung Tissue Reveals Distinct Biochemical Composition, Stiffness, and Viscoelasticity in Reconstituted Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:793-805. [PMID: 36728815 PMCID: PMC9945306 DOI: 10.1021/acsabm.2c00968] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM)-derived hydrogels are in demand for use in lung tissue engineering to mimic the native microenvironment of cells in vitro. Decellularization of native tissues has been pursued for preserving organotypic ECM while eliminating cellular content and reconstitution into scaffolds which allows re-cellularization for modeling homeostasis, regeneration, or diseases. Achieving mechanical stability and understanding the effects of the decellularization process on mechanical parameters of the reconstituted ECM hydrogels present a challenge in the field. Stiffness and viscoelasticity are important characteristics of tissue mechanics that regulate crucial cellular processes and their in vitro representation in engineered models is a current aspiration. The effect of decellularization on viscoelastic properties of resulting ECM hydrogels has not yet been addressed. The aim of this study was to establish bovine lung tissue decellularization for the first time via pursuing four different protocols and characterization of reconstituted decellularized lung ECM hydrogels for biochemical and mechanical properties. Our data reveal that bovine lungs provide a reproducible alternative to human lungs for disease modeling with optimal retention of ECM components upon decellularization. We demonstrate that the decellularization method significantly affects ECM content, stiffness, and viscoelastic properties of resulting hydrogels. Lastly, we examined the impact of these aspects on viability, morphology, and growth of lung cancer cells, healthy bronchial epithelial cells, and patient-derived lung organoids.
Collapse
Affiliation(s)
- Alican Kuşoğlu
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Kardelen Yangın
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Sena N Özkan
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Sevgi Sarıca
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Deniz Örnek
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Nuriye Solcan
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - İsmail C Karaoğlu
- Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Seda Kızılel
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey.,Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Pınar Bulutay
- Department of Pathology, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Pınar Fırat
- Department of Pathology, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Serhan Tanju
- Department of Thoracic Surgery, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Şükrü Dilege
- Department of Thoracic Surgery, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey.,Department of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
10
|
de Wit RJJ, van Dis DJ, Bertrand ME, Tiemessen D, Siddiqi S, Oosterwijk E, Verhagen AFTM. Scaffold-based tissue engineering: Supercritical carbon dioxide as an alternative method for decellularization and sterilization of dense materials. Acta Biomater 2023; 155:323-332. [PMID: 36423818 DOI: 10.1016/j.actbio.2022.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Development of ready-to-use biomaterials and scaffolds is vital for further advancement of scaffold-based tissue engineering in clinical practice. Scaffolds need to mimic 3D ultrastructure, have adequate mechanical strength, are biocompatible, non-immunogenic and need to promote tissue regeneration in vivo. Although decellularization of native tissues seems promising to deliver scaffolds that meet these criteria, adequate decellularization of hard, poorly penetrable and poorly diffusible tissues remains challenging whilst being a very time-consuming process. In this study, a method to decellularize hard, dense tissues using supercritical carbon-dioxide preceded by a freeze/thaw cycle and followed by several washing steps is presented, demonstrating decellularisation efficiency and substantially reduced production/handling time. Additionally, supercritical carbon-dioxide treatment was used as sterilization method, further reducing the time required to produce the final scaffold. Histological evaluation showed that, after fine-tuning of the process, a partially acellular scaffold was obtained, with preservation of glycosaminoglycans and collagen fibers, albeit that the amount of residual dsDNA was still higher then chemically decellularized tissue. Biomechanical properties of the scaffold were similar to the native, non-decellularized tissue. After sterilization with supercritical carbon-dioxide the simulated functional outcome was more similar to native trachea, when compared to sterilization using gamma irradiation. Thus, decellularization and sterilization using supercritical carbon-dioxide with washing steps is an effective method for dense cartilaginous materials, and tuneable to meet different demands in other applications, but further optimization may be required. STATEMENT OF SIGNIFICANCE: Further advancement of the use of tissue engineered tracheal constructs is restricted by the lack of the ideal scaffold. Decellularized trachea is considered a promising scaffold, but the hard, poorly diffusible tissue remains challenging while forming a very time consumable process. Decellularization using supercritical carbon dioxide (scCO2) seems promising, resulting in efficient removal of cellular material while reducing production and handling time. Addition of scCO2 as a sterilization method resulted in further time reduction while improving functional outcome in comparison with traditional sterilization methods. This study presents an promising alternative method for decellularization and sterilization of dense materials, which can be tuned to meet different demands in other applications.
Collapse
Affiliation(s)
- R J J de Wit
- Department of Cardio-Thoracic Surgery, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands.
| | - D J van Dis
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - M E Bertrand
- HCM Medical, Kerkenbos 10-113, BJ, Nijmegen 6546, The Netherlands
| | - D Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - S Siddiqi
- Department of Cardio-Thoracic Surgery, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - E Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| | - A F T M Verhagen
- Department of Cardio-Thoracic Surgery, Radboud University Medical Center, Geert Grooteplein 28, GE, Nijmegen 6525, the Netherlands
| |
Collapse
|
11
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
12
|
Li P, Feng M, Hu X, Zhang C, Zhu J, Xu G, Li L, Zhao Y. Biological evaluation of acellular bovine bone matrix treated with NaOH. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:58. [PMID: 35838844 PMCID: PMC9287214 DOI: 10.1007/s10856-022-06678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
We mainly proceed from the view of biological effect to study the acellular bovine bone matrix (ABBM) by the low concentration of hydrogen oxidation. After cleaning the bovine bone routinely, it was cleaned with different concentrations of NaOH and stained with hematoxylin-eosin (HE) to observe the effect of decellulization. The effect of bovine bone matrix treated with NaOH were observed by optical microscopy and scanning electron microscopy (SEM), and compared by DNA residue detection. Cell toxicity was also evaluated in MC3T3-E1 cells by CCK-8. For the in vitro osteogenesis detection, alkaline phosphatase (ALP) staining and alizarin red (AR) staining were performed in MC3T3-E1 cells. And the in vivo experiment, Micro CT, HE and Masson staining were used to observe whether the osteogenic effect of the materials treated with 1% NaOH solution was affected at 6 and 12 weeks. After the bovine bone was decellularized with different concentrations of NaOH solution, HE staining showed that ultrasonic cleaning with 1% NaOH solution for 30 min had the best effect of decellularization. The SEM showed that ABBM treated with 1% NaOH solution had few residual cells on the surface of the three-dimensional porous compared to ABBM treated with conventional chemical reagents. DNA residues and cytotoxicity of ABBM treated with 1% NaOH were both reduced. The results of ALP staining and AR staining showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis effect. The results of micro-CT, HE staining and Masson staining in animal experiments also showed that ABBM treated with 1% NaOH solution had no effect on the osteogenesis ability. The decellularization treatment of ABBM with the low concentration of NaOH can be more cost-effective, effectively remove the residual cellular components, without affecting the osteogenic ability. Our work may provide a novelty thought and a modified method to applicate the acellular bovine bone matrix clinically better. Graphical abstract.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Mengchun Feng
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Xiantong Hu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Chunli Zhang
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Jialiang Zhu
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China
| | - Gang Xu
- Department of Orthopaedics, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, PR China.
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic Diseases, Dalian, 116011, Liaoning Province, PR China.
| | - Li Li
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, 100048, Beijing, PR China.
- Beijing Engineering Research Center of Orthopaedic Implants, 100048, Beijing, PR China.
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, 710032, Xi'an, PR China.
| |
Collapse
|
13
|
Adil A, Xu M, Haykal S. Recellularization of Bioengineered Scaffolds for Vascular Composite Allotransplantation. Front Surg 2022; 9:843677. [PMID: 35693318 PMCID: PMC9174637 DOI: 10.3389/fsurg.2022.843677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022] Open
Abstract
Traumatic injuries or cancer resection resulting in large volumetric soft tissue loss requires surgical reconstruction. Vascular composite allotransplantation (VCA) is an emerging reconstructive option that transfers multiple, complex tissues as a whole subunit from donor to recipient. Although promising, VCA is limited due to side effects of immunosuppression. Tissue-engineered scaffolds obtained by decellularization and recellularization hold great promise. Decellularization is a process that removes cellular materials while preserving the extracellular matrix architecture. Subsequent recellularization of these acellular scaffolds with recipient-specific cells can help circumvent adverse immune-mediated host responses and allow transplantation of allografts by reducing and possibly eliminating the need for immunosuppression. Recellularization of acellular tissue scaffolds is a technique that was first investigated and reported in whole organs. More recently, work has been performed to apply this technique to VCA. Additional work is needed to address barriers associated with tissue recellularization such as: cell type selection, cell distribution, and functionalization of the vasculature and musculature. These factors ultimately contribute to achieving tissue integration and viability following allotransplantation. The present work will review the current state-of-the-art in soft tissue scaffolds with specific emphasis on recellularization techniques. We will discuss biological and engineering process considerations, technical and scientific challenges, and the potential clinical impact of this technology to advance the field of VCA and reconstructive surgery.
Collapse
Affiliation(s)
- Aisha Adil
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael Xu
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Correspondence: Siba Haykal
| |
Collapse
|
14
|
Mir M, Chen J, Pinezich MR, O'Neill JD, Guenthart BA, Vunjak-Novakovic G, Kim J. Imaging-Guided Bioreactor for Generating Bioengineered Airway Tissue. J Vis Exp 2022:10.3791/63544. [PMID: 35467661 PMCID: PMC9204391 DOI: 10.3791/63544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Repeated injury to airway tissue can impair lung function and cause chronic lung disease, such as chronic obstructive pulmonary disease. Advances in regenerative medicine and bioreactor technologies offer opportunities to produce lab-grown functional tissue and organ constructs that can be used to screen drugs, model disease, and engineer tissue replacements. Here, a miniaturized bioreactor coupled with an imaging modality that allows in situ visualization of the inner lumen of explanted rat trachea during in vitro tissue manipulation and culture is described. Using this bioreactor, the protocol demonstrates imaging-guided selective removal of endogenous cellular components while preserving the intrinsic biochemical features and ultrastructure of the airway tissue matrix. Furthermore, the delivery, uniform distribution, and subsequent prolonged culture of exogenous cells on the decellularized airway lumen with optical monitoring in situ are shown. The results highlight that the imaging-guided bioreactor can potentially be used to facilitate the generation of functional in vitro airway tissues.
Collapse
Affiliation(s)
- Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Stevens Institute of Technology
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center
| | | | | | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology;
| |
Collapse
|
15
|
Dai Q, Jiang W, Huang F, Song F, Zhang J, Zhao H. Recent Advances in Liver Engineering With Decellularized Scaffold. Front Bioeng Biotechnol 2022; 10:831477. [PMID: 35223793 PMCID: PMC8866951 DOI: 10.3389/fbioe.2022.831477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Liver transplantation is currently the only effective treatment for patients with end-stage liver disease; however, donor liver scarcity is a notable concern. As a result, extensive endeavors have been made to diversify the source of donor livers. For example, the use of a decellularized scaffold in liver engineering has gained considerable attention in recent years. The decellularized scaffold preserves the original orchestral structure and bioactive chemicals of the liver, and has the potential to create a de novo liver that is fit for transplantation after recellularization. The structure of the liver and hepatic extracellular matrix, decellularization, recellularization, and recent developments are discussed in this review. Additionally, the criteria for assessment and major obstacles in using a decellularized scaffold are covered in detail.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Wei Jiang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Huang
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Jiqian Zhang, ; Hongchuan Zhao,
| | - Hongchuan Zhao
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Jiqian Zhang, ; Hongchuan Zhao,
| |
Collapse
|
16
|
Mahfouzi SH, Amoabediny G, Safiabadi Tali SH. Advances in bioreactors for lung bioengineering: From scalable cell culture to tissue growth monitoring. Biotechnol Bioeng 2021; 118:2142-2167. [PMID: 33629350 DOI: 10.1002/bit.27728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Lung bioengineering has emerged to resolve the current lung transplantation limitations and risks, including the shortage of donor organs and the high rejection rate of transplanted lungs. One of the most critical elements of lung bioengineering is bioreactors. Bioreactors with different applications have been developed in the last decade for lung bioengineering approaches, aiming to produce functional reproducible tissue constructs. Here, the current status and advances made in the development and application of bioreactors for bioengineering lungs are comprehensively reviewed. First, bioreactor design criteria are explained, followed by a discussion on using bioreactors as a culture system for scalable expansion and proliferation of lung cells, such as producing epithelial cells from induced pluripotent stem cells (iPSCs). Next, bioreactor systems facilitating and improving decellularization and recellularization of lung tissues are discussed, highlighting the studies that developed bioreactors for producing engineered human-sized lungs. Then, monitoring bioreactors are reviewed, showing their ability to evaluate and optimize the culture conditions for maturing engineered lung tissues, followed by an explanation on the ability of ex vivo lung perfusion systems for reconditioning the lungs before transplantation. After that, lung cancer studies simplified by bioreactors are discussed, showing the potentials of bioreactors in lung disease modeling. Finally, other platforms with the potential of facilitating lung bioengineering are described, including the in vivo bioreactors and lung-on-a-chip models. In the end, concluding remarks and future directions are put forward to accelerate lung bioengineering using bioreactors.
Collapse
Affiliation(s)
- Seyed Hossein Mahfouzi
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran.,Department of Biotechnology and Pharmaceutical Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hamid Safiabadi Tali
- Department of Biomedical Engineering, The Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Abaci A, Guvendiren M. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. Adv Healthc Mater 2020; 9:e2000734. [PMID: 32691980 DOI: 10.1002/adhm.202000734] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Indexed: 12/17/2022]
Abstract
3D bioprinting is an emerging technology to fabricate tissues and organs by precisely positioning cells into 3D structures using printable cell-laden formulations known as bioinks. Various bioinks are utilized in 3D bioprinting applications; however, developing the perfect bioink to fabricate constructs with biomimetic microenvironment and mechanical properties that are similar to native tissues is a challenging task. In recent years, decellularized extracellular matrix (dECM)-based bioinks have received an increasing attention in 3D bioprinting applications, since they are derived from native tissues and possess unique, complex tissue-specific biochemical properties. This review focuses on designing dECM-based bioinks for tissue and organ bioprinting, including commonly used decellularization and decellularized tissue characterization methods, bioink formulation and characterization, applications of dECM-based bioinks, and most recent advancements in dECM-based bioink design.
Collapse
Affiliation(s)
- Alperen Abaci
- Instructive Biomaterials and Additive Manufacturing Laboratory Otto H. York Chemical and Materials Engineering 138 York Center New Jersey Institute of Technology University Heights Newark NJ 07102 USA
| | - Murat Guvendiren
- Instructive Biomaterials and Additive Manufacturing Laboratory Otto H. York Chemical and Materials Engineering 138 York Center New Jersey Institute of Technology University Heights Newark NJ 07102 USA
- Department of Biomedical Engineering New Jersey Institute of Technology University Heights Newark NJ 07102 USA
| |
Collapse
|
18
|
Eyre K, Samper E, Haverich A, Hilfiker A, Andrée B. Re-endothelialization of non-detergent decellularized porcine vessels. Artif Organs 2020; 45:E53-E64. [PMID: 33001470 DOI: 10.1111/aor.13836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/31/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
Tissue engineering utilizes an interdisciplinary approach to generate constructs for the treatment and repair of diseased organs. Generation of small vessels as vascular grafts or as envisioned central vessel for vascularized constructs is still a challenge. Here, the decellularization of porcine vessels by a non-detergent based protocol was developed and investigated. Perfusion-decellularization with sodium hydroxide solution resulted in removal of cellular material throughout the whole length of the vessel while preserving structural and mechanical integrity. A re-endothelialization of the retrieved matrix with human umbilical vein endothelial cells and cardiac endothelial cells was achieved through rotation-based seeding employing a custom-made bioreactor. A confluent monolayer was detected on the entire luminal surface. Thus, a non-detergent-based decellularization method allowing the re-endothelialization of the luminal surface was developed in this study, thereby paving the way for future implementation of the resulting construct as vascular graft or as central vessel for tissue engineered constructs in need of a perfusion system with readily available anastomosis sites.
Collapse
Affiliation(s)
- Katerina Eyre
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Esther Samper
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Birgit Andrée
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
20
|
Novoseletskaya E, Grigorieva O, Nimiritsky P, Basalova N, Eremichev R, Milovskaya I, Kulebyakin K, Kulebyakina M, Rodionov S, Omelyanenko N, Efimenko A. Mesenchymal Stromal Cell-Produced Components of Extracellular Matrix Potentiate Multipotent Stem Cell Response to Differentiation Stimuli. Front Cell Dev Biol 2020; 8:555378. [PMID: 33072743 PMCID: PMC7536557 DOI: 10.3389/fcell.2020.555378] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and dynamic microenvironment for cells regulating their behavior and fate. As a critical component of stem cell niche ECM maintains stem cells and activates their proliferation and differentiation under specific stimuli. Mesenchymal stem/stromal cells (MSCs) regulate tissue-specific stem cell functions locating in their immediate microenvironment and producing various bioactive factors, including ECM components. We evaluated the ability of MSC-produced ECM to restore stem and progenitor cell microenvironment in vitro and analyzed the possible mechanisms of its effects. Human MSC cell sheets were decellularized by different agents (detergents, enzymes, and apoptosis inductors) to select the optimized combination (CHAPS and DNAse I) based on the conservation of decellularized ECM (dECM) structure and effectiveness of DNA removal. Prepared dECM was non-immunogenic, supported MSC proliferation and formation of larger colonies in colony-forming unit-assay. Decellularized ECM effectively promoted MSC trilineage differentiation (adipogenic, osteogenic, and chondrogenic) compared to plastic or plastic covered by selected ECM components (collagen, fibronectin, laminin). Interestingly, dECM produced by human fibroblasts could not enhance MSC differentiation like MSC-produced dECM, indicating cell-specific functionality of dECM. We demonstrated the significant integrin contribution in dECM-cell interaction by blocking the stimulatory effects of dECM with RGD peptide and suggested the involvement of key intracellular signaling pathways activation (pERK/ERK and pFAK/FAK axes, pYAP/YAP and beta-catenin) in the observed processes based on the results of inhibitory analysis. Taken together, we suppose that MSC-produced dECM may mimic stem cell niche components in vitro and maintain multipotent progenitor cells to insure their effective response to external differentiating stimuli upon activation. The obtained data provide more insights into the possible role of MSC-produced ECM in stem and progenitor cell regulation within their niches. Our results are also useful for the developing of dECM-based cell-free products for regenerative medicine.
Collapse
Affiliation(s)
- Ekaterina Novoseletskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Roman Eremichev
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Irina Milovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Kulebyakin
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei Rodionov
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Nikolai Omelyanenko
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Tsuchiya T, Doi R, Obata T, Hatachi G, Nagayasu T. Lung Microvascular Niche, Repair, and Engineering. Front Bioeng Biotechnol 2020; 8:105. [PMID: 32154234 PMCID: PMC7047880 DOI: 10.3389/fbioe.2020.00105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/03/2020] [Indexed: 12/28/2022] Open
Abstract
Biomaterials have been used for a long time in the field of medicine. Since the success of "tissue engineering" pioneered by Langer and Vacanti in 1993, tissue engineering studies have advanced from simple tissue generation to whole organ generation with three-dimensional reconstruction. Decellularized scaffolds have been widely used in the field of reconstructive surgery because the tissues used to generate decellularized scaffolds can be easily harvested from animals or humans. When a patient's own cells can be seeded onto decellularized biomaterials, theoretically this will create immunocompatible organs generated from allo- or xeno-organs. The most important aspect of lung tissue engineering is that the delicate three-dimensional structure of the organ is maintained during the tissue engineering process. Therefore, organ decellularization has special advantages for lung tissue engineering where it is essential to maintain the extremely thin basement membrane in the alveoli. Since 2010, there have been many methodological developments in the decellularization and recellularization of lung scaffolds, which includes improvements in the decellularization protocols and the selection and preparation of seeding cells. However, early transplanted engineered lungs terminated in organ failure in a short period. Immature vasculature reconstruction is considered to be the main cause of engineered organ failure. Immature vasculature causes thrombus formation in the engineered lung. Successful reconstruction of a mature vasculature network would be a major breakthrough in achieving success in lung engineering. In order to regenerate the mature vasculature network, we need to remodel the vascular niche, especially the microvasculature, in the organ scaffold. This review highlights the reconstruction of the vascular niche in a decellularized lung scaffold. Because the vascular niche consists of endothelial cells (ECs), pericytes, extracellular matrix (ECM), and the epithelial-endothelial interface, all of which might affect the vascular tight junction (TJ), we discuss ECM composition and reconstruction, the contribution of ECs and perivascular cells, the air-blood barrier (ABB) function, and the effects of physiological factors during the lung microvasculature repair and engineering process. The goal of the present review is to confirm the possibility of success in lung microvascular engineering in whole organ engineering and explore the future direction of the current methodology.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Division of Nucleic Acid Drug Development, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Go Hatachi
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
22
|
Obata T, Tsuchiya T, Akita S, Kawahara T, Matsumoto K, Miyazaki T, Masumoto H, Kobayashi E, Niklason LE, Nagayasu T. Utilization of Natural Detergent Potassium Laurate for Decellularization in Lung Bioengineering. Tissue Eng Part C Methods 2019; 25:459-471. [DOI: 10.1089/ten.tec.2019.0016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Tomohiro Obata
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Translational Research Center, Research Institute for Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Sadanori Akita
- Department of Plastic Surgery, Reconstructive, and Aesthetic Surgery, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takayoshi Kawahara
- Research and Development Department and Quality Assurance Department, Shabondama Soap Co., Ltd., Kitakyusyu City, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Eiji Kobayashi
- Center for Development of Advanced Medical Technology, Jichi Medical University, Shimotsuke, Japan
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Biomedical Research Support Center, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
23
|
Fernández-Pérez J, Ahearne M. Decellularization and recellularization of cornea: Progress towards a donor alternative. Methods 2019; 171:86-96. [PMID: 31128238 DOI: 10.1016/j.ymeth.2019.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The global shortage of donor corneas for transplantation has led to corneal bioengineering being investigated as a method to generate transplantable tissues. Decellularized corneas are among the most promising materials for engineering corneal tissue since they replicate the complex structure and composition of real corneas. Decellularization is a process that aims to remove cells from organs or tissues resulting in a cell-free scaffold consisting of the tissues extracellular matrix. Here different decellularization techniques are described, including physical, chemical and biological methods. Analytical techniques to confirm decellularization efficiency are also discussed. Different cell sources for the recellularization of the three layers of the cornea, recellularization methods used in the literature and techniques used to assess the outcome of the implantation of such scaffolds are examined. Studies involving the application of decellularized corneas in animal models and human clinical studies are discussed. Finally, challenges for this technology are explored involving scalability, automatization and regulatory affairs.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Ahearne
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland.
| |
Collapse
|
24
|
Liu G, Wang B, Li S, Jin Q, Dai Y. Human breast cancer decellularized scaffolds promote epithelial-to-mesenchymal transitions and stemness of breast cancer cells in vitro. J Cell Physiol 2018; 234:9447-9456. [PMID: 30478896 DOI: 10.1002/jcp.27630] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/27/2018] [Indexed: 12/11/2022]
Abstract
Breast cancer, with unsatisfactory survival rates, is the leading cause of cancer-related death in women worldwide. Recent advances in the genetic basis of breast cancer have benefitted the development of gene-based medicines and therapies. Tissue engineering technologies, including tissue decellularizations and reconstructions, are potential therapeutic alternatives for cancer research and tissue regeneration. In our study, human breast cancer biopsies were decellularized by a detergent technique, with sodium lauryl ether sulfate (SLES) solution, for the first time. And the decellularization process was optimized to maximally maintain tissue microarchitectures and extracellular matrix (ECM) components with minimal DNA compounds preserved. Histology analysis and DNA quantification results confirmed the decellularization effect with maximal genetic compounds removal. Quantification, immunofluorescence, and histology analyses demonstrated better preservation of ECM components in 0.5% SLES-treated scaffolds. Scaffolds seeded with MCF-7 cells demonstrated the process of cell recellularization in vitro, with increased cell migration, proliferation, and epithelial-to-mesenchymal transition (EMT) process. When treated with 5-fluorouracil, the expressions of stem cell markers, including Oct4, Sox2, and CD49F, were maximally maintained in the recellularized scaffold with decreased apoptosis rates compared with monolayer cells. These results showed that the decellularized breast scaffold model with SLES treatments would help to simulate the pathogenesis of breast cancer in vitro. And we hope that this model could further accelerate the development of effective therapies for breast cancer and benefit drug screenings.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Biao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Shubin Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Qin Jin
- Department of Pathlogy, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Yanfeng Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of life science, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
25
|
da Palma RK, Fratini P, Schiavo Matias GS, Cereta AD, Guimarães LL, Anunciação ARDA, de Oliveira LVF, Farre R, Miglino MA. Equine lung decellularization: a potential approach for in vitro modeling the role of the extracellular matrix in asthma. J Tissue Eng 2018; 9:2041731418810164. [PMID: 30450188 PMCID: PMC6236489 DOI: 10.1177/2041731418810164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022] Open
Abstract
Contrary to conventional research animals, horses naturally develop asthma, a
disease in which the extracellular matrix of the lung plays a significant role.
Hence, the horse lung extracellular matrix appears to be an ideal candidate
model for in vitro studying the mechanisms and potential treatments for asthma.
However, so far, such model to study cell–extracellular matrix interactions in
asthma has not been developed. The aim of this study was to establish a protocol
for equine lung decellularization that maintains the architecture of the
extracellular matrix and could be used in the future as an in vitro model for
therapeutic treatment in asthma. For this the equine lungs were decellularized
by sodium dodecyl sulfate detergent perfusion at constant gravitational pressure
of 30 cmH2O. Lung scaffolds were assessed by immunohistochemistry
(collagen I, III, IV, laminin, and fibronectin), scanning electron microscopy,
and DNA quantification. Their mechanical property was assessed by measuring lung
compliance using the super-syringe technique. The optimized protocol of lung
equine decellularization was effective to remove cells (19.8 ng/mg) and to
preserve collagen I, III, IV, laminin, and fibronectin. Moreover, scanning
electron microscopy analysis demonstrated maintained microscopic lung
structures. The decellularized lungs presented lower compliance compared to
native lung. In conclusion we described a reproducible decellularization
protocol that can produce an acellular equine lung feasible for the future
development of novel treatment strategies in asthma.
Collapse
Affiliation(s)
- Renata Kelly da Palma
- Post Graduate Program in Science of Rehabilitation, University Nove de Julho (UNINOVE), São Paulo, Brazil.,Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Gustavo Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andressa Daronco Cereta
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Leticia Lopes Guimarães
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | - Ramon Farre
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|