1
|
Nejadi Orang F, Abdoli Shadbad M. CircRNA and lncRNA-associated competing endogenous RNA networks in medulloblastoma: a scoping review. Cancer Cell Int 2024; 24:248. [PMID: 39010056 PMCID: PMC11251335 DOI: 10.1186/s12935-024-03427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Medulloblastoma is one of the common primary central nervous system (CNS) malignancies in pediatric patients. The main treatment is surgical resection preceded and/or followed by chemoradiotherapy. However, their serious side effects necessitate a better understanding of medulloblastoma biology to develop novel therapeutic options. MAIN BODY Circular RNA (circRNA) and long non-coding RNA (lncRNA) regulate gene expression via microRNA (miRNA) pathways. Although growing evidence has highlighted the significance of circRNA and lncRNA-associated competing endogenous RNA (ceRNA) networks in cancers, no study has comprehensively investigated them in medulloblastoma. For this aim, the Web of Science, PubMed, Scopus, and Embase were systematically searched to obtain the relevant papers published before 16 September 2023, adhering to the PRISMA-ScR statement. HOTAIR, NEAT1, linc-NeD125, HHIP-AS1, CRNDE, and TP73-AS1 are the oncogenic lncRNAs, and Nkx2-2as is a tumor-suppressive lncRNA that develop lncRNA-associated ceRNA networks in medulloblastoma. CircSKA3 and circRNA_103128 are upregulated oncogenic circRNAs that develop circRNA-associated ceRNA networks in medulloblastoma. CONCLUSION In summary, this study has provided an overview of the existing evidence on circRNA and lncRNA-associated ceRNA networks and their impact on miRNA and mRNA expression involved in various signaling pathways of medulloblastoma. Suppressing the oncogenic ceRNA networks and augmenting tumor-suppressive ceRNA networks can provide ample opportunities for medulloblastoma treatment.
Collapse
Affiliation(s)
| | - Mahdi Abdoli Shadbad
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Wu Y, Wang Z, Yu S, Liu D, Sun L. LncmiRHG-MIR100HG: A new budding star in cancer. Front Oncol 2022; 12:997532. [PMID: 36212400 PMCID: PMC9544809 DOI: 10.3389/fonc.2022.997532] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
MIR100HG, also known as lncRNA mir-100-let-7a-2-mir-125b-1 cluster host gene, is a new and critical regulator in cancers in recent years. MIR100HG is dysregulated in various cancers and plays an oncogenic or tumor-suppressive role, which participates in many tumor cell biology processes and cancer-related pathways. The errant expression of MIR100HG has inspired people to investigate the function of MIR100HG and its diagnostic and therapeutic potential in cancers. Many studies have indicated that dysregulated expression of MIR100HG is markedly correlated with poor prognosis and clinicopathological features. In this review, we will highlight the characteristics and introduce the role of MIR100HG in different cancers, and summarize the molecular mechanism, pathways, chemoresistance, and current research progress of MIR100HG in cancers. Furthermore, some open questions in this rapidly advancing field are proposed. These updates clarify our understanding of MIR100HG in cancers, which may pave the way for the application of MIR100HG-targeting approaches in future cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Yingnan Wu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhenzhen Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shan Yu
- Department of Pathology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongzhe Liu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Li Y, Xu S, Xu D, Pan T, Guo J, Gu S, Lin Q, Li X, Li K, Xiang W. Pediatric Pan-Central Nervous System Tumor Methylome Analyses Reveal Immune-Related LncRNAs. Front Immunol 2022; 13:853904. [PMID: 35603200 PMCID: PMC9114481 DOI: 10.3389/fimmu.2022.853904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 01/10/2023] Open
Abstract
Pediatric central nervous system (CNS) tumors are the second most common cancer diagnosis among children. Long noncoding RNAs (lncRNAs) emerge as critical regulators of gene expression, and they play fundamental roles in immune regulation. However, knowledge on epigenetic changes in lncRNAs in diverse types of pediatric CNS tumors is lacking. Here, we integrated the DNA methylation profiles of 2,257 pediatric CNS tumors across 61 subtypes with lncRNA annotations and presented the epigenetically regulated landscape of lncRNAs. We revealed the prevalent lncRNA methylation heterogeneity across pediatric pan-CNS tumors. Based on lncRNA methylation profiles, we refined 14 lncRNA methylation clusters with distinct immune microenvironment patterns. Moreover, we found that lncRNA methylations were significantly correlated with immune cell infiltrations in diverse tumor subtypes. Immune-related lncRNAs were further identified by investigating their correlation with immune cell infiltrations and potentially regulated target genes. LncRNA with methylation perturbations potentially regulate the genes in immune-related pathways. We finally identified several candidate immune-related lncRNA biomarkers (i.e., SSTR5-AS1, CNTN4-AS1, and OSTM1-AS1) in pediatric cancer for further functional validation. In summary, our study represents a comprehensive repertoire of epigenetically regulated immune-related lncRNAs in pediatric pan-CNS tumors, and will facilitate the development of immunotherapeutic targets.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Sicong Xu
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Dahua Xu
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Tao Pan
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Jing Guo
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Shuo Gu
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Qiuyu Lin
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Xia Li
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.,College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kongning Li
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| | - Wei Xiang
- College of Biomedical Information and Engineering, NHC Key Laboratory of Control of Tropical Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
| |
Collapse
|
5
|
Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Liu ZSJ, Kidnapillai S, Richardson M, Gray L, Smith CM, Dean OM, Kim JH, Berk M, Walder K. Co-Expression Networks Unveiled Long Non-Coding RNAs as Molecular Targets of Drugs Used to Treat Bipolar Disorder. Front Pharmacol 2022; 13:873271. [PMID: 35462908 PMCID: PMC9024411 DOI: 10.3389/fphar.2022.873271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like cells treated with widely prescribed BD medications. The aim was to unveil insights into the complex mechanisms of BD medications and highlight potential targets for new drug development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine, lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub lncRNA identification was conducted on key co-expressed modules associated with the drug response. We constructed lncRNA-mRNA co-expression networks and identified key modules underlying these treatments, as well as their enriched biological functions. Processes enriched in key modules included synaptic vesicle cycle, endoplasmic reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-AS1 and MIR100HG were highlighted as driver genes of key modules. Our study demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs. Several lncRNAs have been suggested as major regulators of medication effects and are worthy of further investigation as novel drug targets to treat BD.
Collapse
Affiliation(s)
- Trang TT. Truong
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Briana Spolding
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Zoe SJ. Liu
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Srisaiyini Kidnapillai
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Mark Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Laura Gray
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Craig M. Smith
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Olivia M. Dean
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jee Hyun Kim
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
6
|
Heydarnezhad Asl M, Pasban Khelejani F, Bahojb Mahdavi SZ, Emrahi L, Jebelli A, Mokhtarzadeh A. The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence. J Cell Biochem 2022; 123:995-1024. [PMID: 35106829 DOI: 10.1002/jcb.30221] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding cellular RNAs involved in significant biological phenomena such as differentiation, cell development, genomic imprinting, adjusting the enzymatic activity, regulating chromosome conformation, apoptosis, cell cycle, and cellular senescence. The misregulation of lncRNAs interrupting normal biological processes has been implicated in tumor formation and metastasis, resulting in cancer. Apoptosis and cell cycle, two main biological phenomena, are highly conserved and intimately coupled mechanisms. Hence, some cell cycle regulators can influence both programmed cell death and cell division. Apoptosis eliminates defective and unwanted cells, and the cell cycle enables cells to replicate themselves. The improper regulation of apoptosis and cell cycle contributes to numerous disorders such as neurodegenerative and autoimmune diseases, viral infection, anemia, and mainly cancer. Cellular senescence is a tumor-suppressing response initiated by environmental and internal stress factors. This phenomenon has recently attained more attention due to its therapeutic implications in the field of senotherapy. In this review, the regulatory roles of lncRNAs on apoptosis, cell cycle, and senescence will be discussed. First, the role of lncRNAs in mitochondrial dynamics and apoptosis is addressed. Next, the interaction between lncRNAs and caspases, pro/antiapoptotic proteins, and also EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway will be investigated. Furthermore, the effect of lncRNAs in the cell cycle is surveyed through interaction with cyclins, cdks, p21, and wnt/β-catenin/c-myc pathway. Finally, the function of essential lncRNAs in cellular senescence is mentioned.
Collapse
Affiliation(s)
| | - Faezeh Pasban Khelejani
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Leila Emrahi
- Department of Medical Genetics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Guo M, Li D, Feng Y, Li M, Yang B. Adipose-derived stem cell-derived extracellular vesicles inhibit neuroblastoma growth by regulating GABBR1 activity through LINC00622-mediated transcription factor AR. J Leukoc Biol 2022; 111:19-32. [PMID: 34448502 DOI: 10.1002/jlb.1mia0321-164r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a huge threat to children's health. Adipose-derived stem cells-derived extracellular vesicles (ADSC-Evs) can regulate tumor progression. This study aimed to identify the role of ADSC-Evs in NB. Following ADSC-Ev isolation and identification, PKH26-labeled ADSC-Evs were cocultured with NB cells to observe the internalization of ADSC-Evs. ADSC-Ev effects on NB cell proliferation, invasion, and migration were assessed. The regulatory molecules related to NB development were predicted. The expressions of and relations among LINC00622, transcriptional factor androgen receptor (AR), and gamma-aminobutyric acid B-type receptor 1 (GABRR1) were detected and verified. LINC00622 was inhibited in ADSCs to evaluate ADSC-Ev effects on NB cells. Xenograft tumor experiment in nude mice was further performed to evaluate the effects of ADSC-Evs-carried LINC00622 on NB in vivo. ADSC-Evs inhibited NB cell proliferation, invasion, and migration. ADSC-Evs increased GABBR1 expression in NB cells. ADSC-Evs-carried LINC00622 mediated AR to promote GABBR1 expression. Silencing LINC00622 in ADSCs weakened the inhibition of ADSC-Evs on NB cell malignant behaviors. ADSC-Evs reduced tumor growth in nude mice, which was restored after inhibiting LINC00622 expression in ADSCs. We highlighted that ADSC-Evs carried LINC00622 into NB cells to inhibit transcription factor AR and promote GABBR1 expression, thus inhibiting NB cell growth.
Collapse
Affiliation(s)
- Mengguo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Dongpeng Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yawen Feng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Mu Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| |
Collapse
|
8
|
Nguyen LXT, Zhang B, Hoang DH, Zhao D, Wang H, Wu H, Su YL, Dong H, Rodriguez-Rodriguez S, Armstrong B, Ghoda LY, Perrotti D, Pichiorri F, Chen J, Li L, Kortylewski M, Rockne RC, Kuo YH, Khaled S, Carlesso N, Marcucci G. Cytoplasmic DROSHA and non-canonical mechanisms of MiR-155 biogenesis in FLT3-ITD acute myeloid leukemia. Leukemia 2021; 35:2285-2298. [PMID: 33589748 PMCID: PMC8973317 DOI: 10.1038/s41375-021-01166-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 01/29/2023]
Abstract
We report here on a novel pro-leukemogenic role of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) that interferes with microRNAs (miRNAs) biogenesis in acute myeloid leukemia (AML) blasts. We showed that FLT3-ITD interferes with the canonical biogenesis of intron-hosted miRNAs such as miR-126, by phosphorylating SPRED1 protein and inhibiting the "gatekeeper" Exportin 5 (XPO5)/RAN-GTP complex that regulates the nucleus-to-cytoplasm transport of pre-miRNAs for completion of maturation into mature miRNAs. Of note, despite the blockage of "canonical" miRNA biogenesis, miR-155 remains upregulated in FLT3-ITD+ AML blasts, suggesting activation of alternative mechanisms of miRNA biogenesis that circumvent the XPO5/RAN-GTP blockage. MiR-155, a BIC-155 long noncoding (lnc) RNA-hosted oncogenic miRNA, has previously been implicated in FLT3-ITD+ AML blast hyperproliferation. We showed that FLT3-ITD upregulates miR-155 by inhibiting DDX3X, a protein implicated in the splicing of lncRNAs, via p-AKT. Inhibition of DDX3X increases unspliced BIC-155 that is then shuttled by NXF1 from the nucleus to the cytoplasm, where it is processed into mature miR-155 by cytoplasmic DROSHA, thereby bypassing the XPO5/RAN-GTP blockage via "non-canonical" mechanisms of miRNA biogenesis.
Collapse
Affiliation(s)
- Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA.
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Dandan Zhao
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Huafeng Wang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Herman Wu
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Yu-Lin Su
- Department of Immuno-Oncology, City of Hope Medical Center, Duarte, CA, USA
| | - Haojie Dong
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Sonia Rodriguez-Rodriguez
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Brian Armstrong
- Light Microscopy Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Lucy Y Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Danilo Perrotti
- Department of Medicine, Biochemistry and Molecular Biology and the Marlene and Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| | - Flavia Pichiorri
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Jianjun Chen
- Department of System Biology, City of Hope Medical Center, Duarte, CA, USA
| | - Ling Li
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, City of Hope Medical Center, Duarte, CA, USA
| | - Russell C Rockne
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Samer Khaled
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Nadia Carlesso
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope Medical Center, Duarte, CA, USA.
| |
Collapse
|
9
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
10
|
Mou L, Wang L, Zhang S, Wang Q. Long Noncoding RNA LINC01410 Suppresses Tumorigenesis and Enhances Radiosensitivity in Neuroblastoma Cells Through Regulating miR-545-3p/HK2 Axis. Onco Targets Ther 2021; 14:3225-3238. [PMID: 34040388 PMCID: PMC8140916 DOI: 10.2147/ott.s297969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background Abnormal expression of long noncoding RNAs (lncRNAs) was often involved in tumorigenesis and radiosensitivity of various cancers. The aim of this study was to explore the biological function and regulatory mechanism of lncRNA long intergenic non-protein coding RNA 1410 (LINC01410) in tumorigenesis and radiosensitivity of neuroblastoma (NB). Methods The expression of LINC01410, microRNA-329-3p (miR-545-3p) and hexokinase 2 (HK2) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Methylthiazolyldiphenyl tetrazolium bromide (MTT) assay, colony formation assay and transwell assay were utilized to detect cell viability, colony formation and cell invasion abilities. Glucose consumption or lactate production was measured by glucose assay kit or lactate assay kit, respectively. The interaction between miR-545-3p and LINC01410 or HK2 was predicted by starBase v2.0 and verified by dual-luciferase reporter, RNA Immunoprecipitation (RIP) and RNA pull-down assays. Western blot was used to measure the protein expression of HK2. The mice xenograft model was established to investigate the role of LINC01410 in vivo. Results LINC01410 and HK2 were highly expressed while miR-545-3p was lowly expressed in NB tissues and cells. LINC01410 knockdown inhibited tumorigenesis by repressing cell proliferation and invasion, and increased the radiosensitivity via inhibiting colony formation rates and glycolysis. LINC01410 knockdown also suppressed tumor growth in vivo. Moreover, miR-545-3p could bind to LINC01410 and its downregulation reversed the effects of LINC01410 knockdown on tumorigenesis and radiosensitivity. Additionally, HK2 was a direct target of miR-545-3p and its overexpression attenuated the effects of miR-545-3p restoration on suppression of tumorigenesis and promotion of radiosensitivity. Besides, LINC01410 functioned as a molecular sponge of miR-545-3p to regulate HK2 expression. Conclusion LINC01410 interference inhibited tumorigenesis and increased radiosensitivity via regulating miR-545-3p/HK2 axis, providing a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Liping Mou
- Department of Child Healthcare, People's Hospital of Rizhao, Rizhao, 276800, Shandong, People's Republic of China
| | - Lili Wang
- Department of Pediatrics, People's Hospital of Rizhao, Rizhao, 276800, Shandong, People's Republic of China
| | - Shaoming Zhang
- Department of Neonatology, People's Hospital of Rizhao, Rizhao, 276800, Shandong, People's Republic of China
| | - Qinghua Wang
- Department of Laboratory, People's Hospital of Rizhao, Rizhao, 276800, Shandong, People's Republic of China
| |
Collapse
|
11
|
Rezaei O, Honarmand Tamizkar K, Hajiesmaeili M, Taheri M, Ghafouri-Fard S. Non-Coding RNAs Participate in the Pathogenesis of Neuroblastoma. Front Oncol 2021; 11:617362. [PMID: 33718173 PMCID: PMC7945591 DOI: 10.3389/fonc.2021.617362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma is one of the utmost frequent neoplasms during the first year of life. This pediatric cancer is believed to be originated during the embryonic life from the neural crest cells. Previous studies have detected several types of chromosomal aberrations in this tumor. More recent studies have emphasized on expression profiling of neuroblastoma samples to identify the dysregulated genes in this type of cancer. Non-coding RNAs are among the mostly dysregulated genes in this type of cancer. Such dysregulation has been associated with a number of chromosomal aberrations that are frequently detected in neuroblastoma. In this study, we explain the role of non-coding transcripts in the malignant transformation in neuroblastoma and their role as biomarkers for this pediatric cancer.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
HOTAIRM1 regulates neuronal differentiation by modulating NEUROGENIN 2 and the downstream neurogenic cascade. Cell Death Dis 2020; 11:527. [PMID: 32661334 PMCID: PMC7359305 DOI: 10.1038/s41419-020-02738-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Neuronal differentiation is a timely and spatially regulated process, relying on precisely orchestrated gene expression control. The sequential activation/repression of genes driving cell fate specification is achieved by complex regulatory networks, where transcription factors and noncoding RNAs work in a coordinated manner. Herein, we identify the long noncoding RNA HOTAIRM1 (HOXA Transcript Antisense RNA, Myeloid-Specific 1) as a new player in neuronal differentiation. We demonstrate that the neuronal-enriched HOTAIRM1 isoform epigenetically controls the expression of the proneural transcription factor NEUROGENIN 2 that is key to neuronal fate commitment and critical for brain development. We also show that HOTAIRM1 activity impacts on NEUROGENIN 2 downstream regulatory cascade, thus contributing to the achievement of proper neuronal differentiation timing. Finally, we identify the RNA-binding proteins HNRNPK and FUS as regulators of HOTAIRM1 biogenesis and metabolism. Our findings uncover a new regulatory layer underlying NEUROGENIN 2 transitory expression in neuronal differentiation and reveal a previously unidentified function for the neuronal-induced long noncoding RNA HOTAIRM1.
Collapse
|
13
|
Laneve P, Caffarelli E. The Non-coding Side of Medulloblastoma. Front Cell Dev Biol 2020; 8:275. [PMID: 32528946 PMCID: PMC7266940 DOI: 10.3389/fcell.2020.00275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor and a primary cause of cancer-related death in children. Until a few years ago, only clinical and histological features were exploited for MB pathological classification and outcome prognosis. In the past decade, the advancement of high-throughput molecular analyses that integrate genetic, epigenetic, and expression data, together with the availability of increasing wealth of patient samples, revealed the existence of four molecularly distinct MB subgroups. Their further classification into 12 subtypes not only reduced the well-characterized intertumoral heterogeneity, but also provided new opportunities for the design of targets for precision oncology. Moreover, the identification of tumorigenic and self-renewing subpopulations of cancer stem cells in MB has increased our knowledge of its biology. Despite these advancements, the origin of MB is still debated, and its molecular bases are poorly characterized. A major goal in the field is to identify the key genes that drive tumor growth and the mechanisms through which they are able to promote tumorigenesis. So far, only protein-coding genes acting as oncogenic drivers have been characterized in each MB subgroup. The contribution of the non-coding side of the genome, which produces a plethora of transcripts that control fundamental biological processes, as the cell choice between proliferation and differentiation, is still unappreciated. This review wants to fill this major gap by summarizing the recent findings on the impact of non-coding RNAs in MB initiation and progression. Furthermore, their potential role as specific MB biomarkers and novel therapeutic targets is also highlighted.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
14
|
Yu Y, Chen F, Yang Y, Jin Y, Shi J, Han S, Chu P, Lu J, Tai J, Wang S, Yang W, Wang H, Guo Y, Ni X. lncRNA SNHG16 is associated with proliferation and poor prognosis of pediatric neuroblastoma. Int J Oncol 2019; 55:93-102. [PMID: 31180520 PMCID: PMC6561620 DOI: 10.3892/ijo.2019.4813] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common extracranial solid tumors in children, which has complex molecular mechanisms. Increasing evidence has suggested that long noncoding RNAs (lncRNAs) account for NB pathogenesis. However, the function of small nucleolar RNA host gene 16 (SNHG16) in NB is currently unclear. In the present study, publically available data and clinical specimens were employed to verify the expression of SNHG16 in NB. Colony formation, real‑time cell proliferation and migration assays were performed to demonstrate the status of cellular proliferation and migration. Flow cytometry was used to examine cell cycle progression in SH‑SY5Y cells, and acridine orange/ethidium bromide staining and caspase‑3/7 activity measurements were applied to study cell apoptosis. To explore the underlying mechanism of SNHG16 function, an online database was used to identify potential RNA‑binding proteins that bind SNHG16. The expression of SNHG16 was revealed to be in line with the clinical staging of NB, and high SNHG16 expression was positively associated with poor clinical outcome. Furthermore, SNHG16 silencing inhibited cell proliferation, repressed migration, and induced cell cycle arrest at the G0/G1 phase in SH‑SY5Y cells. Additionally, apoptosis was undetectable in SH‑SY5Y cells following SNHG16 silencing. Bioinformatics analysis revealed that SNHG16 regulated cell proliferation in NB through transcriptional and translational pathways. These results suggested that SNHG16 may serve important roles in the development and progression of NB, and could represent a potential target for NB therapy.
Collapse
Affiliation(s)
- Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Feng Chen
- Department of Functional Neurosurgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Jin Shi
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Jun Tai
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Shengcai Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Wei Yang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health (NCCH), Beijing 100045, P.R. China
| |
Collapse
|
15
|
Chi R, Chen X, Liu M, Zhang H, Li F, Fan X, Wang W, Lu H. Role of SNHG7-miR-653-5p-STAT2 feedback loop in regulating neuroblastoma progression. J Cell Physiol 2019; 234:13403-13412. [PMID: 30623419 DOI: 10.1002/jcp.28017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs (lncRNAs) are reported to be involved in the pathology of numerous cancers, including neuroblastoma (NB). lncRNA SNHG7 has been recognized as a carcinogen in several cancers, but its role in NB progression remains unknown. Our study revealed that SNHG7 expression was markedly higher in NB tissues than that in nontumor tissues. Besides, upregulated SNHG7 was greatly correlated with poor overall survival of NB patients. Functionally, the loss-of-function assays demonstrated that knockdown of SNHG7 inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition in NB cells. Mechanically, the bioinformatics analysis predicted that miR-653-5p was the shared partner of SNHG7 and signal transducer and activator of transcription 2 (STAT2). Unsurprisingly, we further confirmed that SNHG7 could interact with miR-653-5p and therefore functioned as the ceRNA of STAT2 so as to regulate STAT2 expression in NB cells. Moreover, STAT2 expression was in inverse proportion to miR-653-5p level but in positive proportion to SNHG7 level in NB tissues. Importantly, the repressed NB progression induced by silenced SNHG7 was reversed by STAT2 overexpression or miR-653-5p inhibitors. Jointly, our findings elucidated SNHG7 facilitated NB progression through the miR-653-5p/STAT2 pathway, providing a novel therapeutic target and prognostic biomarker for this disease.
Collapse
Affiliation(s)
- Renjie Chi
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xin Chen
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ming Liu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanyu Zhang
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fujiang Li
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xu Fan
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Weiwei Wang
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hongting Lu
- Department of Pediatric Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Laneve P, Rea J, Caffarelli E. Long Noncoding RNAs: Emerging Players in Medulloblastoma. Front Pediatr 2019; 7:67. [PMID: 30923703 PMCID: PMC6426782 DOI: 10.3389/fped.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
Central Nervous System tumors are the leading cause of cancer-related death in children, and medulloblastoma has the highest incidence rate. The current therapies achieve a 5-year survival rate of 50-80%, but often inflict severe secondary effects demanding the urgent development of novel, effective, and less toxic therapeutic strategies. Historically identified on a histopathological basis, medulloblastoma was later classified into four major subgroups-namely WNT, SHH, Group 3, and Group 4-each characterized by distinct transcriptional profiles, copy-number aberrations, somatic mutations, and clinical outcomes. Additional complexity was recently provided by integrating gene- and non-gene-based data, which indicates that each subclass can be further subdivided into specific subtypes. These deeper classifications, while getting over the typical tumor heterogeneity, indicate that different forms of medulloblastoma hold different molecular drivers that can be successfully exploited for a greater diagnostic accuracy and for the development of novel, targeted treatments. Long noncoding RNAs are transcripts that lack coding potential and play relevant roles as regulators of gene expression in mammalian differentiation and developmental processes. Their cell type- and tissue-specificity, higher than mRNAs, make them more informative about cell- type identity than protein-coding genes. Remarkably, about 40% of long noncoding RNAs are expressed in the brain and their aberrant expression has been linked to neuro-oncological disorders. However, while their involvement in gliomas and neuroblastomas has been extensively studied, their role in medulloblastoma is still poorly explored. Here, we present an overview of current knowledge regarding the function played by long noncoding RNAs in medulloblastoma biology.
Collapse
Affiliation(s)
- Pietro Laneve
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Jessica Rea
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Elisa Caffarelli
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| |
Collapse
|
17
|
LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis 2018; 9:805. [PMID: 30042378 PMCID: PMC6057987 DOI: 10.1038/s41419-018-0869-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/10/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) exhibits poor prognosis, with high metastasis and low survival. Long non-coding RNAs (lncRNAs) play critical roles in tumor progression. Here, we identified lncRNA MIR100HG as a pro-oncogene for TNBC progression. Knockdown of MIR100HG decreased cell proliferation and induced cell arrest in the G1 phase, whereas overexpression of MIR100HG significantly increased cell proliferation. Furthermore, MIR100HG regulated the p27 gene to control the cell cycle, and subsequently impacted the progression of TNBC. In analyzing its underlying mechanism, bioinformatics prediction and experimental data demonstrated that MIR100HG participated in the formation of RNA–DNA triplex structures. MIR100HG in The Cancer Genome Atlas (TCGA) and breast cancer cell lines showed higher expression in TNBC than in other tumor types with poor prognosis. In conclusion, our data indicated a novel working pattern of lncRNA in TNBC progression, which may be a potential therapeutic target in such cancers.
Collapse
|
18
|
Le Y, Chen T, Xun K, Ding T. Expression of the Long Intergenic Non-Coding RNA (lincRNA) of the NED25 Gene Modulates the microRNA-125b, STAT3, Nitric Oxide, and Procalcitonin Signaling Pathways in Patients with Sepsis. Med Sci Monit 2018; 24:4555-4566. [PMID: 29962507 PMCID: PMC6060691 DOI: 10.12659/msm.907496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The aim of this study was to investigate the long intergenic non-coding RNA (lincRNA) of the NED25 gene, and the microRNA (miR)-125b, STAT3, nitric oxide (NO), and procalcitonin (PCT) pathway in sepsis. Material/Methods Seventy-five age-matched and sex-matched patients were divided into three groups: 25 patients with sepsis only; 25 patients with septic shock; and 25 healthy control subjects. Computational analysis and a luciferase assay confirmed that the STAT3 and PCT genes were target genes of miR-125b, whereas the lincRNA of the NED25 gene was validated as an endogenous lincRNA competing with miR-125b for binding to STAT3 and PCT. Real-time polymerase chain reaction (PCR) and Western blot measured the expression of miR-125b, STAT3, and PCT in peripheral blood monocytes (PBM) transfected with miR-125b mimics, miR-125b inhibitors, or small interfering (siRNA). Results The expression of miR-125b, the PCT position ratio, the expression of PCT mRNA and protein were increased when compared with healthy individuals. When compared with the siRNA negative control, miR-125b and the lincRNA of the NED25 gene mimics, as well as STAT3 siRNA significantly downregulated the mRNA and protein expression of STAT3 and PCT; mRNA and protein expression of STAT3 and PCT in cells transfected with miR-125b inhibitors were significantly increased. Intracellular nitric oxide (NO) production was upregulated by miR-125b inhibitors and downregulated by miR-125b mimics or siRNA. Conclusions Downregulation of the lincRNA of the NED25 gene was associated with sepsis in patients by modulating the signaling pathways downstream of miR-125b/STAT3/PCT/NO signaling pathway.
Collapse
Affiliation(s)
- Yuanjie Le
- Department of Emergency, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China (mainland)
| | - Tongen Chen
- Department of Emergency, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China (mainland)
| | - Kai Xun
- Department of Emergency, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China (mainland)
| | - Tao Ding
- Department of Emergency, Ningbo No. 2 Hospital, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
19
|
Laneve P, Po A, Favia A, Legnini I, Alfano V, Rea J, Di Carlo V, Bevilacqua V, Miele E, Mastronuzzi A, Carai A, Locatelli F, Bozzoni I, Ferretti E, Caffarelli E. The long noncoding RNA linc-NeD125 controls the expression of medulloblastoma driver genes by microRNA sponge activity. Oncotarget 2018; 8:31003-31015. [PMID: 28415684 PMCID: PMC5458184 DOI: 10.18632/oncotarget.16049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/27/2017] [Indexed: 01/24/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are major regulators of physiological and disease-related gene expression, particularly in the central nervous system. Dysregulated lncRNA expression has been documented in several human cancers, and their tissue-specificity makes them attractive candidates as diagnostic/prognostic biomarkers and/or therapeutic agents. Here we show that linc-NeD125, which we previously characterized as a neuronal-induced lncRNA, is significantly overexpressed in Group 4 medulloblastomas (G4 MBs), the largest and least well characterized molecular MB subgroup. Mechanistically, linc-NeD125 is able to recruit the miRNA-induced silencing complex (miRISC) and to directly bind the microRNAs miR-19a-3p, miR-19b-3p and miR-106a-5p. Functionally, linc-NeD125 acts as a competing endogenous RNA (ceRNA) that, sequestering the three miRNAs, leads to de-repression of their targets CDK6, MYCN, SNCAIP, and KDM6A, which are major driver genes of G4 MB. Accordingly, linc-NeD125 downregulation reduces G4 cell proliferation. Moreover, we also provide evidence that linc-NeD125 ectopic expression in the aggressive Group 3 MB cells attenuates their proliferation, migration and invasion.This study unveils the first lncRNA-based ceRNA network in central nervous system tumours and provides a novel molecular circuit underlying the enigmatic Group 4 medulloblastoma.
Collapse
Affiliation(s)
- Pietro Laneve
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Annarita Favia
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Vincenzo Alfano
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy.,Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Jessica Rea
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Valerio Di Carlo
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.,Present addresses: Center for Genomic Regulation, 08003 Barcelona, Spain
| | - Valeria Bevilacqua
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.,Present addresses: Virology Program, INGM-Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy
| | - Evelina Miele
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy.,Present addresses: Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy.,University of Pavia, 27100 Pavia, Italy
| | - Irene Bozzoni
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.,Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy.,Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine Sapienza University of Rome, 00161 Rome, Italy.,Neuromed Institute, 86077 Pozzilli, Italy
| | - Elisa Caffarelli
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy
| |
Collapse
|
20
|
Pagès A, Dotu I, Pallarès-Albanell J, Martí E, Guigó R, Eyras E. The discovery potential of RNA processing profiles. Nucleic Acids Res 2018; 46:e15. [PMID: 29155959 PMCID: PMC5814818 DOI: 10.1093/nar/gkx1115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
Small non-coding RNAs (sncRNAs) are highly abundant molecules that regulate essential cellular processes and are classified according to sequence and structure. Here we argue that read profiles from size-selected RNA sequencing capture the post-transcriptional processing specific to each RNA family, thereby providing functional information independently of sequence and structure. We developed SeRPeNT, a new computational method that exploits reproducibility across replicates and uses dynamic time-warping and density-based clustering algorithms to identify, characterize and compare sncRNAs by harnessing the power of read profiles. We applied SeRPeNT to: (i) generate an extended human annotation with 671 new sncRNAs from known classes and 131 from new potential classes, (ii) show pervasive differential processing of sncRNAs between cell compartments and (iii) predict new molecules with miRNA-like behaviour from snoRNA, tRNA and long non-coding RNA precursors, potentially dependent on the miRNA biogenesis pathway. Furthermore, we validated experimentally four predicted novel non-coding RNAs: a miRNA, a snoRNA-derived miRNA, a processed tRNA and a new uncharacterized sncRNA. SeRPeNT facilitates fast and accurate discovery and characterization of sncRNAs at an unprecedented scale. SeRPeNT code is available under the MIT license at https://github.com/comprna/SeRPeNT.
Collapse
Affiliation(s)
- Amadís Pagès
- Pompeu Fabra University (UPF), E08003 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, E08003 Barcelona, Spain
| | - Ivan Dotu
- Pompeu Fabra University (UPF), E08003 Barcelona, Spain
- IMIM—Hospital del Mar Medical Research Institute, E08003 Barcelona, Spain
| | - Joan Pallarès-Albanell
- Pompeu Fabra University (UPF), E08003 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, E08003 Barcelona, Spain
| | - Eulàlia Martí
- Pompeu Fabra University (UPF), E08003 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, E08003 Barcelona, Spain
| | - Roderic Guigó
- Pompeu Fabra University (UPF), E08003 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, E08003 Barcelona, Spain
| | - Eduardo Eyras
- Pompeu Fabra University (UPF), E08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), E08010 Barcelona, Spain
| |
Collapse
|