1
|
Webb J, Zhao M, Campbell AH, Paul NA, Cummins SF, Eamens AL. The microRNA Pathway of Macroalgae: Its Similarities and Differences to the Plant and Animal microRNA Pathways. Genes (Basel) 2025; 16:442. [PMID: 40282402 PMCID: PMC12026948 DOI: 10.3390/genes16040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
In plants and animals, the microRNA (miRNA) class of small regulatory RNA plays an essential role in controlling gene expression in all aspects of development, to respond to environmental stress, or to defend against pathogen attack. This well-established master regulatory role for miRNAs has led to each protein-mediated step of both the plant and animal miRNA pathways being thoroughly characterized. Furthermore, this degree of characterization has led to the development of a suite of miRNA-based technologies for gene expression manipulation for fundamental research or for use in industrial or medical applications. In direct contrast, molecular research on the miRNA pathway of macroalgae, specifically seaweeds (marine macroalgae), remains in its infancy. However, the molecular research conducted to date on the seaweed miRNA pathway has shown that it shares functional features specific to either the plant or animal miRNA pathway. In addition, of the small number of seaweed species where miRNA data is available, little sequence conservation of individual miRNAs exists. These preliminary findings show the pressing need for substantive research into the seaweed miRNA pathway to advance our current understanding of this essential gene expression regulatory process. Such research will also generate the knowledge required to develop novel miRNA-based technologies for use in seaweeds. In this review, we compare and contrast the seaweed miRNA pathway to those well-characterized pathways of plants and animals and outline the low degree of miRNA sequence conservation across the polyphyletic group known as the seaweeds.
Collapse
Affiliation(s)
- Jessica Webb
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Min Zhao
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Alexandra H. Campbell
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Nicholas A. Paul
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Scott F. Cummins
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Andrew L. Eamens
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia (M.Z.); (A.H.C.); (N.A.P.); (S.F.C.)
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
2
|
Zhao H, Cao H, Zhang M, Deng S, Li T, Xing S. Genome-Wide Identification and Characterization of SPL Family Genes in Chenopodium quinoa. Genes (Basel) 2022; 13:genes13081455. [PMID: 36011366 PMCID: PMC9408038 DOI: 10.3390/genes13081455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes encode a large family of plant-specific transcription factors that play important roles in plant growth, development, and stress responses. However, there is little information available on SPL genes in Chenopodiaceae. Here, 23 SPL genes were identified and characterized in the highly nutritious crop Chenopodium quinoa. Chromosome localization analysis indicated that the 23 CqSPL genes were unevenly distributed on 12 of 18 chromosomes. Two zinc finger-like structures and a nuclear location signal were present in the SBP domains of all CqSPLs, with the exception of CqSPL21/22. Phylogenetic analysis revealed that these genes were classified into eight groups (group I–VIII). The exon–intron structure and motif composition of the genes in each group were similar. Of the 23 CqSPLs, 13 were potential targets of miR156/7. In addition, 5 putative miR156-encoding loci and 13 putative miR157-encoding loci were predicted in the quinoa genome, and they were unevenly distributed on chromosome 1–4. The expression of several Cqu-MIR156/7 loci was confirmed by reverse transcription polymerase chain reaction in seedlings. Many putative cis-elements associated with light, stress, and phytohormone responses were identified in the promoter regions of CqSPLs, suggesting that CqSPL genes are likely involved in the regulation of key developmental processes and stress responses. Expression analysis revealed highly diverse expression patterns of CqSPLs among tissues. Many CqSPLs were highly expressed in leaves, flowers, and seeds, and their expression levels were low in the roots, suggesting that CqSPLs play distinct roles in the development and growth of quinoa. The expression of 13 of 23 CqSPL genes responded to salt treatment (11 up-regulated and 2 down-regulated). A total of 22 of 23 CqSPL genes responded to drought stress (21 up-regulated and 1 down-regulated). Moreover, the expression of 14 CqSPL genes was significantly altered following cadmium treatment (3 up-regulated and 11 down-regulated). CqSPL genes are thus involved in quinoa responses to salt/drought and cadmium stresses. These findings provide new insights that will aid future studies of the biological functions of CqSPLs in C. quinoa.
Collapse
Affiliation(s)
- Hongmei Zhao
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
| | - Huaqi Cao
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Mian Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Sufang Deng
- College of Biological Sciences and Technology, Jinzhong University, Jinzhong 030600, Shanxi, China
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, Shanxi, China
- Correspondence: ; Tel.: +86-186-0346-2517
| |
Collapse
|
3
|
Gao F, Nan F, Feng J, Xie S. Characterization and Comparative Analysis of MicroRNAs in 3 Representative Red Algae. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2868. [PMID: 35350641 PMCID: PMC8926317 DOI: 10.30498/ijb.2021.247164.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background MicroRNA (miRNA) is a key regulator at the gene posttranscriptional regulation level. We have previously identified miRNAs and their putative targets in 3 representative red algae, Chondrus crispus, Galdieria sulphurariais and Porphyridium purpureum. Objectives In this study, unique molecular and evolutionary characterization of miRNAs were revealed in the 3 red algae based on the comparative miRNAs profiling. Materials and Methods Genome locations of small RNAs (sRNAs), miRNAs and MIRNAs (MIRs) in the 3 red algae were shown by collinearity analysis. Characterization of miRNAs and MIRs were profiled via bioinformatics analysis. Taken MIR156s and miR156s for examples, red algae miRNAs evolutionary features were demonstrated via phylogenetic and evolutionary information analysis. MiRNA targets main inhibition type was validated via performing data statistics and RLM-RACE PCR. Key target genes and their function were predicted by the common Gene Ontolgoy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results Quantity, nucleotide bias and common sequences of miRNAs were analyzed in the 3 red algae. Four typical precursor structures and primary molecular features of red algae miRNAs were profiled. Genome-wide collinearity analysis of sRNAs, miRNAs and MIRs in the 3 red algae was performed to show their distribution and interrelation based on the deep sequencing data. Taken red algae MIR156s for example, their family members and sequences divergence were demonstrated. The whole evolutionary processes of miR156s and pre-miR156s in red algae were steady with negative selected pressure though diverse phylogenetic relationships and evolutionary parameters showed. Through 3 red algae miR156 targets validation, cleavage was validated as their main miRNA targets inhibition type. The common target genes (GO:0009536) enriched significantly for plastid formation will provide important insights for red algal biopigment research. The common KEGG pathways (ko01100) enriched significantly were predicted without a detailed reference metabolic map. Conclusions MiRNA plays an essential role in gene expression regulation involved in diverse biological processes of red algae. Comprehensive molecular and evolutionary features of miRNAs in the 3 red algae will provide insights for further utilizing the algae resources at the molecular level.
Collapse
Affiliation(s)
| | | | | | - Shulian Xie
- School of Life Science, Shanxi University, Wucheng Road No. 92, Taiyuan 030006, P. R. China
| |
Collapse
|
4
|
Paul S, Bravo Vázquez LA, Márquez Nafarrate M, Gutiérrez Reséndiz AI, Srivastava A, Sharma A. The regulatory activities of microRNAs in non-vascular plants: a mini review. PLANTA 2021; 254:57. [PMID: 34424349 DOI: 10.1007/s00425-021-03707-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/14/2021] [Indexed: 05/21/2023]
Abstract
MicroRNA-mediated gene regulation in non-vascular plants is potentially involved in several unique biological functions, including biosynthesis of several highly valuable exclusive bioactive compounds, and those small RNAs could be manipulated for the overproduction of essential bioactive compounds in the future. MicroRNAs (miRNAs) are a class of endogenous, small (20-24 nucleotides), non-coding RNA molecules that regulate gene expression through the miRNA-mediated mechanisms of either translational inhibition or messenger RNA (mRNA) cleavage. In the past years, studies have mainly focused on elucidating the roles of miRNAs in vascular plants as compared to non-vascular plants. However, non-vascular plant miRNAs have been predicted to be involved in a wide variety of specific biological mechanisms; nevertheless, some of them have been demonstrated explicitly, thus showing that the research field of this plant group owns a noteworthy potential to develop novel investigations oriented towards the functional characterization of these miRNAs. Furthermore, the insights into the roles of miRNAs in non-vascular plants might be of great importance for designing the miRNA-based genetically modified plants for valuable secondary metabolites, active compounds, and biofuels in the future. Therefore, in this current review, we provide an overview of the potential roles of miRNAs in different groups of non-vascular plants such as algae and bryophytes.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Marilyn Márquez Nafarrate
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Av. Eugenio Garza Sada, No. 2501 Tecnologico, CP 64849, Monterrey, Mexico
| | - Ana Isabel Gutiérrez Reséndiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
5
|
Carbone F, Bruno L, Perrotta G, Bitonti MB, Muzzalupo I, Chiappetta A. Identification of miRNAs involved in fruit ripening by deep sequencing of Olea europaea L. transcriptome. PLoS One 2019; 14:e0221460. [PMID: 31437230 PMCID: PMC6705801 DOI: 10.1371/journal.pone.0221460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/08/2019] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The ripening process of olive fruits is associated with chemical and/or enzymatic specific transformations, making them particularly attractive to animals and humans. In olive drupes, including 'Cassanese' ones, ripening is usually accompanied by progressive chromatic change, resulting in a final red-brown colourization of both epidermis and mesocarp. This event has an exception in the 'Leucocarpa', in which we observed the destabilization in the equilibrium between the chlorophyll metabolism and that of the other pigments, particularly the anthocyanins, whose switch-off during maturation promotes the white colouration of the fruits. Recently, transcription profiling of 'Leucocarpa' and 'Cassanese' olives along ripening, performed through an Illumina RNA-seq approach, has provided useful insights on genes functions involved in fruit maturation such as those related to the biosynthesis of flavonoids and anthocyanins. METHODOLOGY To assess expression alterations of genes involved in flavonoids and anthocyanins biosynthetic pathways during ripening, possibly caused by small nuclear RNA (snRNA) in olive drupes, snRNA libraries from 'Leucocarpa' and 'Cassanese' were constructed with RNAs extracted at 100 and 130 Days After Flowering (DAF) and sequenced by an Illumina approach. 130 conserved microRNAs (miRNA) in the Viridiplantae belonging to 14 miRNA families were identified. Regarding the 130 conserved miRNAs, approximately the 48% were identified in all libraries, 5 and 18 miRNAs were shared between the "Cassanese" (C100, C130) and "Leucocarpa" (L100, L130) libraries, respectively. CONCLUSION For the remaining reads not-matching with known miRNAs in the Viridiplantae, we combined secondary structure and minimum free energy to discover novel olive miRNAs. Based on these analyses, 492 sequences were considered as putative novel miRNAs. The putative target genes of identified miRNA were computationally predicted by alignment with the olive drupe transcripts obtained from the same samples. A total of 218 transcripts were predicted as targets of 130 known and 492 putative novel miRNAs. Interestingly, some identified target genes are involved in negative regulation of anthocyanin metabolic process. Quantification of the expression pattern of three miRNA and their target transcripts by qRT-PCR assay confirmed the results of Illumina sequencing.
Collapse
Affiliation(s)
- Fabrizio Carbone
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata Rende (CS) IT
| | - Leonardo Bruno
- Research Centre for Olive, Citrus and Tree Fruit—Council for Agricultural Research and Economics, Rende (CS) IT
| | | | - Maria B. Bitonti
- Research Centre for Olive, Citrus and Tree Fruit—Council for Agricultural Research and Economics, Rende (CS) IT
| | - Innocenzo Muzzalupo
- Department of Biology, Ecology and Earth Science, University of Calabria, Arcavacata Rende (CS) IT
| | - Adriana Chiappetta
- Research Centre for Olive, Citrus and Tree Fruit—Council for Agricultural Research and Economics, Rende (CS) IT
| |
Collapse
|
6
|
Identification and Characterization of MiRNAs in Coccomyxa subellipsoidea C-169. Int J Mol Sci 2019; 20:ijms20143448. [PMID: 31337051 PMCID: PMC6678167 DOI: 10.3390/ijms20143448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
Coccomyxa subellipsoidea C-169 (C-169) is an oleaginous microalga which is promising for renewable biofuel production. MicroRNAs (miRNAs), as the pivotal modulators of gene expression at post-transcriptional level, are prospective candidates for bioengineering practice. However, so far, no miRNA in C-169 has been reported and its potential impact upon CO2 supplementation remains unclear. High-throughput sequencing of small RNAs from C-169 cultured in air or 2% CO2 revealed 124 miRNAs in total, including 118 conserved miRNAs and six novel ones. In total, 384 genes were predicted as their potential target genes, 320 for conserved miRNAs and 64 for novel miRNAs. The annotated target genes were significantly enriched in six KEGG pathways, including pantothenate and CoA biosynthesis, C5-branched dibasic acid metabolism, 2-oxocarboxylic acid metabolism, butanoate metabolism, valine, leucine and isoleucine biosynthesis and alpha-linolenic acid metabolism. The miRNAs’ target genes were enriched in lipid metabolism as well as RNA-interacting proteins involved in translation, transcription and rRNA processing. The pioneering identification of C-169 miRNAs and analysis of their putative target genes lay the foundation for further miRNA research in eukaryotic algae and will contribute to the development of C-169 as an oleaginous microalga through bioengineering in the future.
Collapse
|
7
|
Chen F, Zhang J, Chen J, Li X, Dong W, Hu J, Lin M, Liu Y, Li G, Wang Z, Zhang L. realDB: a genome and transcriptome resource for the red algae (phylum Rhodophyta). DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5055577. [PMID: 30020436 PMCID: PMC6051438 DOI: 10.1093/database/bay072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/15/2018] [Indexed: 11/28/2022]
Abstract
With over 6000 species in seven classes, red algae (Rhodophyta) have diverse economic, ecological, experimental and evolutionary values. However, red algae are usually absent or rare in comparative analyses because genomic information of this phylum is often under-represented in various comprehensive genome databases. To improve the accessibility to the ome data and omics tools for red algae, we provided 10 genomes and 27 transcriptomes representing all seven classes of Rhodophyta. Three genomes and 18 transcriptomes were de novo assembled and annotated in this project. User-friendly BLAST suit, Jbrowse tools and search system were developed for online analyses. Detailed introductions to red algae taxonomy and the sequencing status are also provided. In conclusion, realDB (realDB.algaegenome.org) provides a platform covering the most genome and transcriptome data for red algae and a suite of tools for online analyses, and will attract both red algal biologists and those working on plant ecology, evolution and development. Database URL: http://realdb.algaegenome.org/
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiawei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xiaojiang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jian Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meigui Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanhui Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guowei Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.,College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Zhang N, Li Z, Bai F, Ji N, Zheng Y, Li Y, Chen J, Mao X. MicroRNA expression profiles in benign prostatic hyperplasia. Mol Med Rep 2017; 17:3853-3858. [PMID: 29359788 DOI: 10.3892/mmr.2017.8318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/17/2017] [Indexed: 11/06/2022] Open
Abstract
Although alterations in microRNA (miRNA) expression have been previously investigated prostate cancer, the expression of miRNAs specifically in benign prostate hyperplasia (BPH) of the prostatic stroma remains to be fully elucidated. In the present study, miRNAs and gene expression profiles were investigated using microarray analysis and reverse transcription quantitative‑polymerase chain reaction (RT‑qPCR) in BPH tissue to clarify the associations between miRNA expression and target genes. Prostate tissue samples from five patients with BPH and five healthy men were analyzed using human Affymetrix miRNA and mRNA microarrays and differentially expressed miRNAs were validated using RT‑qPCR with 30 BPH and 5 healthy control samples. A total of 8 miRNAs, including miRNA (miR)‑96‑5p, miR‑1271‑5p, miR‑21‑3p, miR‑96‑5p, miR‑181a‑5p, miR‑143‑3p, miR‑4428 and miR‑106a‑5p were upregulated and 8 miRNAs (miR‑16‑5p, miR‑19b‑5p, miR‑940, miR‑25, miR‑486‑3p, miR‑30a‑3p, let‑7c and miR‑191) were downregulated. Additionally, miR‑96‑5p was demonstrated to have an inhibitory effect on the mRNA expression levels of the following genes: Mechanistic target of rapamycin (MTOR), RPTOR independent companion of MTOR complex 2, syntaxin 10, autophagy‑related protein 9A, zinc finger E‑box binding homeobox 1, caspase 2 and protein kinase c ε. Additionally, 16 differentially expressed miRNAs were identified using RT‑qPCR analysis. This preliminary study provides a solid basis for a further functional study to investigate the underlying regulatory mechanisms of BPH.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Zhongyi Li
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Fuding Bai
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Na Ji
- Department of Anesthesia, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yichun Zheng
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yi Li
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jimin Chen
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiawa Mao
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
9
|
Identification and Target Prediction of MicroRNAs in Ulmus pumila L. Seedling Roots under Salt Stress by High-Throughput Sequencing. FORESTS 2016. [DOI: 10.3390/f7120318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|