1
|
dos Santos NM, Picinato BA, Santos LS, de Araújo HL, Balan A, Koide T, Marques MV. Mapping the IscR regulon sheds light on the regulation of iron homeostasis in Caulobacter. Front Microbiol 2024; 15:1463854. [PMID: 39411446 PMCID: PMC11475020 DOI: 10.3389/fmicb.2024.1463854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
The role of the iron-sulfur [Fe-S] cluster transcriptional regulator IscR in maintaining [Fe-S] homeostasis in bacteria is still poorly characterized in many groups. Caulobacter crescentus and other Alphaproteobacteria have a single operon encoding [Fe-S] cluster biosynthesis enzymes. We showed that the expression of this operon increases in iron starvation, but not in oxidative stress, and is controlled mainly by IscR. Transcriptome analysis comparing an iscR null mutant strain with the wild-type (wt) strain identified 94 differentially expressed genes (DEGs), with 47 upregulated and 47 downregulated genes in the ΔiscR mutant. We determined the IscR binding sites in conditions of sufficient or scarce iron by Chromatin Immunoprecipitation followed by DNA sequencing (ChIP-seq), identifying two distinct putative DNA binding motifs. The estimated IscR regulon comprises 302 genes, and direct binding to several regulatory regions was shown by Electrophoresis Mobility Shift Assay (EMSA). The results showed that the IscR and Fur regulons partially overlap and that IscR represses the expression of the respiration regulator FixK, fine-tuning gene regulation in response to iron and redox balance.
Collapse
Affiliation(s)
- Naara M. dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lucas S. Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Andrea Balan
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Batista BB, de Lima VM, Picinato BA, Koide T, da Silva Neto JF. A quorum-sensing regulatory cascade for siderophore-mediated iron homeostasis in Chromobacterium violaceum. mSystems 2024; 9:e0139723. [PMID: 38501880 PMCID: PMC11019928 DOI: 10.1128/msystems.01397-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
Iron is a transition metal used as a cofactor in many biochemical reactions. In bacteria, iron homeostasis involves Fur-mediated de-repression of iron uptake systems, such as the iron-chelating compounds siderophores. In this work, we identified and characterized novel regulatory systems that control siderophores in the environmental opportunistic pathogen Chromobacterium violaceum. Screening of a 10,000-transposon mutant library for siderophore halos identified seven possible regulatory systems involved in siderophore-mediated iron homeostasis in C. violaceum. Further characterization revealed a regulatory cascade that controls siderophores involving the transcription factor VitR acting upstream of the quorum-sensing (QS) system CviIR. Mutation of the regulator VitR led to an increase in siderophore halos, and a decrease in biofilm, violacein, and protease production. We determined that these effects occurred due to VitR-dependent de-repression of vioS. Increased VioS leads to direct inhibition of the CviR regulator by protein-protein interaction. Indeed, insertion mutations in cviR and null mutations of cviI and cviR led to an increase of siderophore halos. RNA-seq of the cviI and cviR mutants revealed that CviR regulates CviI-dependent and CviI-independent regulons. Classical QS-dependent processes (violacein, proteases, and antibiotics) were activated at high cell density by both CviI and CviR. However, genes related to iron homeostasis and many other processes were regulated by CviR but not CviI, suggesting that CviR acts without its canonical CviI autoinducer. Our data revealed a complex regulatory cascade involving QS that controls siderophore-mediated iron homeostasis in C. violaceum.IMPORTANCEThe iron-chelating compounds siderophores play a major role in bacterial iron acquisition. Here, we employed a genetic screen to identify novel siderophore regulatory systems in Chromobacterium violaceum, an opportunistic human pathogen. Many mutants with increased siderophore halos had transposon insertions in genes encoding transcription factors, including a novel regulator called VitR, and CviR, the regulator of the quorum-sensing (QS) system CviIR. We found that VitR is upstream in the pathway and acts as a dedicated repressor of vioS, which encodes a direct CviR-inhibitory protein. Indeed, all QS-related phenotypes of a vitR mutant were rescued in a vitRvioS mutant. At high cell density, CviIR activated classical QS-dependent processes (violacein, proteases, and antibiotics production). However, genes related to iron homeostasis and type-III and type-VI secretion systems were regulated by CviR in a CviI- or cell density-independent manner. Our data unveil a complex regulatory cascade integrating QS and siderophores in C. violaceum.
Collapse
Affiliation(s)
- Bianca B. Batista
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinicius M. de Lima
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - José F. da Silva Neto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
3
|
de Araújo HL, Picinato BA, Lorenzetti APR, Muthunayake NS, Rathnayaka-Mudiyanselage IW, dos Santos NM, Schrader J, Koide T, Marques MV. The DEAD-box RNA helicase RhlB is required for efficient RNA processing at low temperature in Caulobacter. Microbiol Spectr 2023; 11:e0193423. [PMID: 37850787 PMCID: PMC10715135 DOI: 10.1128/spectrum.01934-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/19/2023] Open
Abstract
IMPORTANCE One of the most important control points in gene regulation is RNA stability, which determines the half-life of a transcript from its transcription until its degradation. Bacteria have evolved a sophisticated multi-enzymatic complex, the RNA degradosome, which is dedicated mostly to RNA turnover. The combined activity of RNase E and the other RNA degradosome enzymes provides an efficient pipeline for the complete degradation of RNAs. The DEAD-box RNA helicases are very often found in RNA degradosomes from phylogenetically distant bacteria, confirming their importance in unwinding structured RNA for subsequent degradation. This work showed that the absence of the RNA helicase RhlB in the free-living Alphaproteobacterium Caulobacter crescentus causes important changes in gene expression and cell physiology. These are probably due, at least in part, to inefficient RNA processing by the RNA degradosome, particularly at low-temperature conditions.
Collapse
Affiliation(s)
- Hugo L. de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Beatriz A. Picinato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Alan P. R. Lorenzetti
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | - Naara M. dos Santos
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jared Schrader
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Tie Koide
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marilis V. Marques
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Lorenzetti APR, Kusebauch U, Zaramela LS, Wu WJ, de Almeida JPP, Turkarslan S, L. G. de Lomana A, Gomes-Filho JV, Vêncio RZN, Moritz RL, Koide T, Baliga NS. A Genome-Scale Atlas Reveals Complex Interplay of Transcription and Translation in an Archaeon. mSystems 2023; 8:e0081622. [PMID: 36912639 PMCID: PMC10134880 DOI: 10.1128/msystems.00816-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea. Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS200/IS605, IS4, and ISH3 families. Findings from this study are provided as an atlas in a public Web resource (https://halodata.systemsbiology.net). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas (https://halodata.systemsbiology.net).
Collapse
Affiliation(s)
- Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Lívia S. Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, Washington, USA
| | - João P. P. de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - José V. Gomes-Filho
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|
5
|
Skovajsová E, Colonna B, Prosseda G, Sellin ME, Di Martino ML. The VirF21:VirF30 protein ratio is affected by temperature and impacts Shigella flexneri host cell invasion. FEMS Microbiol Lett 2022; 369:fnac043. [PMID: 35521699 PMCID: PMC9217107 DOI: 10.1093/femsle/fnac043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/21/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022] Open
Abstract
Shigella spp, the etiological agents of bacillary dysentery in humans, have evolved an intricate regulatory strategy to ensure fine-tuned expression of virulence genes in response to environmental stimuli. A key component in this regulation is VirF, an AraC-like transcription factor, which at the host temperature (37°C) triggers, directly or indirectly, the expression of > 30 virulence genes important for invasion of the intestinal epithelium. Previous work identified two different forms of VirF with distinct functions: VirF30 activates virulence gene expression, while VirF21 appears to negatively regulate virF itself. Moreover, VirF21 originates from either differential translation of the virF mRNA or from a shorter leaderless mRNA (llmRNA). Here we report that both expression of the virF21 llmRNA and the VirF21:VirF30 protein ratio are higher at 30°C than at 37°C, suggesting a possible involvement of VirF21 in minimizing virulence gene expression outside the host (30°C). Ectopic elevation of VirF21 levels at 37°C indeed suppresses Shigella´s ability to infect epithelial cells. Finally, we find that the VirF21 C-terminal portion, predicted to contain a Helix-Turn-Helix motif (HTH2), is required for the functionality of this negative virulence regulator.
Collapse
Affiliation(s)
- Eva Skovajsová
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Bianca Colonna
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Gianni Prosseda
- Department of Biology and Biotechnology “C. Darwin”, Istituto Pasteur Italia, Sapienza Università di Roma, Rome, 00185, Italy
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| | - Maria Letizia Di Martino
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 75123, Sweden
| |
Collapse
|
6
|
An Extracytoplasmic Function Sigma Factor Required for Full Virulence in Xanthomonas citri pv. citri. J Bacteriol 2022; 204:e0062421. [PMID: 35446118 DOI: 10.1128/jb.00624-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.
Collapse
|
7
|
Ibrahim AGAER, Vêncio RZN, Lorenzetti APR, Koide T. Halobacterium salinarum and Haloferax volcanii Comparative Transcriptomics Reveals Conserved Transcriptional Processing Sites. Genes (Basel) 2021; 12:genes12071018. [PMID: 34209065 PMCID: PMC8303175 DOI: 10.3390/genes12071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional processing of messenger RNA is an important regulatory strategy that allows relatively fast responses to changes in environmental conditions. In halophile systems biology, the protein perspective of this problem (i.e., ribonucleases which implement the cleavages) is generally more studied than the RNA perspective (i.e., processing sites). In the present in silico work, we mapped genome-wide transcriptional processing sites (TPS) in two halophilic model organisms, Halobacterium salinarum NRC-1 and Haloferax volcanii DS2. TPS were established by reanalysis of publicly available differential RNA-seq (dRNA-seq) data, searching for non-primary (monophosphorylated RNAs) enrichment. We found 2093 TPS in 43% of H. salinarum genes and 3515 TPS in 49% of H. volcanii chromosomal genes. Of the 244 conserved TPS sites found, the majority were located around start and stop codons of orthologous genes. Specific genes are highlighted when discussing antisense, ribosome and insertion sequence associated TPS. Examples include the cell division gene ftsZ2, whose differential processing signal along growth was detected and correlated with post-transcriptional regulation, and biogenesis of sense overlapping transcripts associated with IS200/IS605. We hereby present the comparative, transcriptomics-based processing site maps with a companion browsing interface.
Collapse
Affiliation(s)
- Amr Galal Abd El-Raheem Ibrahim
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (A.G.A.E.-R.I.); (R.Z.N.V.)
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (A.G.A.E.-R.I.); (R.Z.N.V.)
| | - Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
| | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
- Correspondence: ; Tel.: +55-16-3315-3107
| |
Collapse
|
8
|
Ardern Z, Neuhaus K, Scherer S. Are Antisense Proteins in Prokaryotes Functional? Front Mol Biosci 2020; 7:187. [PMID: 32923454 PMCID: PMC7457138 DOI: 10.3389/fmolb.2020.00187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Many prokaryotic RNAs are transcribed from loci outside of annotated protein coding genes. Across bacterial species hundreds of short open reading frames antisense to annotated genes show evidence of both transcription and translation, for instance in ribosome profiling data. Determining the functional fraction of these protein products awaits further research, including insights from studies of molecular interactions and detailed evolutionary analysis. There are multiple lines of evidence, however, that many of these newly discovered proteins are of use to the organism. Condition-specific phenotypes have been characterized for a few. These proteins should be added to genome annotations, and the methods for predicting them standardized. Evolutionary analysis of these typically young sequences also may provide important insights into gene evolution. This research should be prioritized for its exciting potential to uncover large numbers of novel proteins with extremely diverse potential practical uses, including applications in synthetic biology and responding to pathogens.
Collapse
Affiliation(s)
- Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Munich, Germany
| | | | | |
Collapse
|
9
|
The Primary Antisense Transcriptome of Halobacterium salinarum NRC-1. Genes (Basel) 2019; 10:genes10040280. [PMID: 30959844 PMCID: PMC6523106 DOI: 10.3390/genes10040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3′ ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin–antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.
Collapse
|