1
|
Xu X, Chen W, Zheng J, Liao JY, Yan H, Zhu S. The proximity proteome of pre-40S pre-ribosomal particle components PNO1 and NOB1 using turboID proximity labeling technology. Gene 2025; 955:149411. [PMID: 40157618 DOI: 10.1016/j.gene.2025.149411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND The ribosome assembly factors PNO1 and NOB1 play crucial roles in the maturation of the 40S ribosomal small subunit. TurboID is an efficient biotin ligase that can biotinylate proteins in proximity to the target protein and is widely used to study complex biological processes within cells. In this study, we employed this technology to investigate the complex proximity network of PNO1 and NOB1 within the cell, further revealing their key roles in ribosome biogenesis. RESULTS Firstly, through immunofluorescence experiments, we observed that PNO1 and NOB1 have different localizations within the cell. Subsequently, by analyzing the proximal proteins labeled by PNO1-TurboID and NOB1-TurboID, we identified 871 proximal proteins for PNO1 and 1044 for NOB1, with 663 overlapping proteins. Functional analysis revealed that these proximal proteins are predominantly enriched in biological processes related to ribosome assembly, rRNA processing, and translation, all of which are closely linked to ribosome biogenesis. Notably, we validated the mass spectrometry-identified proteins through co-IP experiments and found that PNO1 and NOB1 interact with the translation-related proteins EIF4B and EIF4G2. CONCLUSION Our study constructed the protein network environment of ribosome assembly factors PNO1 and NOB1 within the cell and found that their neighboring proteins are primarily involved in key biological processes such as ribosome processing, mRNA translation, and the cell cycle, all of which are critical for ribosome biogenesis. These findings provide a valuable foundation for further understanding the roles of PNO1 and NOB1 in ribosome biogenesis and how they regulate this process.
Collapse
Affiliation(s)
- Xingyuan Xu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenli Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiefu Zheng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516600, China
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei 516600, China.
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Shi Q, Xu G, Jiang Y, Yang J, Han X, Wang Q, Li Y, Zhang Z, Wang K, Peng H, Chen F, Ma Y, Zhao L, Chen Y, Liu Z, Yang L, Jia X, Wen T, Tong Z, Cui X, Li F. Phospholipase PLCE1 Promotes Transcription and Phosphorylation of MCM7 to Drive Tumor Progression in Esophageal Cancer. Cancer Res 2024; 84:560-576. [PMID: 38117512 DOI: 10.1158/0008-5472.can-23-1633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.
Collapse
Affiliation(s)
- Qi Shi
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Guixuan Xu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yuliang Jiang
- Department of Oncology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, P.R. China
| | - Xueping Han
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Qian Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Ya Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Zhiyu Zhang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Kaige Wang
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Hao Peng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Fangfang Chen
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Yandi Ma
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Linyue Zhao
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Yunzhao Chen
- Department of Pathology, The people's Hospital of Suzhou National Hi-Tech District, Suzhou, P.R. China
| | - Zheng Liu
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Lan Yang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| | - Xingyuan Jia
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Tao Wen
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiaobin Cui
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, P.R. China
| | - Feng Li
- Medical Research Center and Department of Pathology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, P.R. China
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, P.R. China
| |
Collapse
|
3
|
Eastham M, Pelava A, Wells G, Lee J, Lawrence I, Stewart J, Deichner M, Hertle R, Watkins N, Schneider C. The induction of p53 correlates with defects in the production, but not the levels, of the small ribosomal subunit and stalled large ribosomal subunit biogenesis. Nucleic Acids Res 2023; 51:9397-9414. [PMID: 37526268 PMCID: PMC10516649 DOI: 10.1093/nar/gkad637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
Ribosome biogenesis is one of the biggest consumers of cellular energy. More than 20 genetic diseases (ribosomopathies) and multiple cancers arise from defects in the production of the 40S (SSU) and 60S (LSU) ribosomal subunits. Defects in the production of either the SSU or LSU result in p53 induction through the accumulation of the 5S RNP, an LSU assembly intermediate. While the mechanism is understood for the LSU, it is still unclear how SSU production defects induce p53 through the 5S RNP since the production of the two subunits is believed to be uncoupled. Here, we examined the response to SSU production defects to understand how this leads to the activation of p53 via the 5S RNP. We found that p53 activation occurs rapidly after SSU production is blocked, prior to changes in mature ribosomal RNA (rRNA) levels but correlated with early, middle and late SSU pre-rRNA processing defects. Furthermore, both nucleolar/nuclear LSU maturation, in particular late stages in 5.8S rRNA processing, and pre-LSU export were affected by SSU production defects. We have therefore uncovered a novel connection between the SSU and LSU production pathways in human cells, which explains how p53 is induced in response to SSU production defects.
Collapse
Affiliation(s)
- Matthew John Eastham
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Andria Pelava
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Graeme Raymond Wells
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Justine Katherine Lee
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Isabella Rachel Lawrence
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Joshua Stewart
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Maria Deichner
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Regina Hertle
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nicholas James Watkins
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Claudia Schneider
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
4
|
Schneider C, Bohnsack KE. Caught in the act-Visualizing ribonucleases during eukaryotic ribosome assembly. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1766. [PMID: 36254602 DOI: 10.1002/wrna.1766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 07/20/2023]
Abstract
Ribosomes are essential macromolecular machines responsible for translating the genetic information encoded in mRNAs into proteins. Ribosomes are composed of ribosomal RNAs and proteins (rRNAs and RPs) and the rRNAs fulfill both catalytic and architectural functions. Excision of the mature eukaryotic rRNAs from their precursor transcript is achieved through a complex series of endoribonucleolytic cleavages and exoribonucleolytic processing steps that are precisely coordinated with other aspects of ribosome assembly. Many ribonucleases involved in pre-rRNA processing have been identified and pre-rRNA processing pathways are relatively well defined. However, momentous advances in cryo-electron microscopy have recently enabled structural snapshots of various pre-ribosomal particles from budding yeast (Saccharomyces cerevisiae) and human cells to be captured and, excitingly, these structures not only allow pre-rRNAs to be observed before and after cleavage events, but also enable ribonucleases to be visualized on their target RNAs. These structural views of pre-rRNA processing in action allow a new layer of understanding of rRNA maturation and how it is coordinated with other aspects of ribosome assembly. They illuminate mechanisms of target recognition by the diverse ribonucleases involved and reveal how the cleavage/processing activities of these enzymes are regulated. In this review, we discuss the new insights into pre-rRNA processing gained by structural analyses and the growing understanding of the mechanisms of ribonuclease regulation. This article is categorized under: Translation > Ribosome Biogenesis RNA Processing > rRNA Processing.
Collapse
Affiliation(s)
- Claudia Schneider
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Bohnsack KE, Kanwal N, Bohnsack MT. Prp43/DHX15 exemplify RNA helicase multifunctionality in the gene expression network. Nucleic Acids Res 2022; 50:9012-9022. [PMID: 35993807 PMCID: PMC9458436 DOI: 10.1093/nar/gkac687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022] Open
Abstract
Dynamic regulation of RNA folding and structure is critical for the biogenesis and function of RNAs and ribonucleoprotein (RNP) complexes. Through their nucleotide triphosphate-dependent remodelling functions, RNA helicases are key modulators of RNA/RNP structure. While some RNA helicases are dedicated to a specific target RNA, others are multifunctional and engage numerous substrate RNAs in different aspects of RNA metabolism. The discovery of such multitasking RNA helicases raises the intriguing question of how these enzymes can act on diverse RNAs but also maintain specificity for their particular targets within the RNA-dense cellular environment. Furthermore, the identification of RNA helicases that sit at the nexus between different aspects of RNA metabolism raises the possibility that they mediate cross-regulation of different cellular processes. Prominent and extensively characterized multifunctional DEAH/RHA-box RNA helicases are DHX15 and its Saccharomyces cerevisiae (yeast) homologue Prp43. Due to their central roles in key cellular processes, these enzymes have also served as prototypes for mechanistic studies elucidating the mode of action of this type of enzyme. Here, we summarize the current knowledge on the structure, regulation and cellular functions of Prp43/DHX15, and discuss the general concept and implications of RNA helicase multifunctionality.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Correspondence may also be addressed to Katherine E. Bohnsack. Tel: +49 551 3969305; Fax: +49 551 395960;
| | - Nidhi Kanwal
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- To whom correspondence should be addressed. Tel: +49 551 395968; Fax: +49 551 395960;
| |
Collapse
|
6
|
Cerezo EL, Houles T, Lié O, Sarthou MK, Audoynaud C, Lavoie G, Halladjian M, Cantaloube S, Froment C, Burlet-Schiltz O, Henry Y, Roux PP, Henras AK, Romeo Y. RIOK2 phosphorylation by RSK promotes synthesis of the human small ribosomal subunit. PLoS Genet 2021; 17:e1009583. [PMID: 34125833 PMCID: PMC8224940 DOI: 10.1371/journal.pgen.1009583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.
Collapse
Affiliation(s)
- Emilie L. Cerezo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thibault Houles
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Oriane Lié
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marie-Kerguelen Sarthou
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Audoynaud
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
| | - Maral Halladjian
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sylvain Cantaloube
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Froment
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Yves Henry
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Québec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Québec, Canada
| | - Anthony K. Henras
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
7
|
Knüppel R, Trahan C, Kern M, Wagner A, Grünberger F, Hausner W, Quax TEF, Albers SV, Oeffinger M, Ferreira-Cerca S. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Nucleic Acids Res 2021; 49:1662-1687. [PMID: 33434266 PMCID: PMC7897474 DOI: 10.1093/nar/gkaa1268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.
Collapse
Affiliation(s)
- Robert Knüppel
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Michael Kern
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Felix Grünberger
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Winfried Hausner
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
8
|
RNA Metabolism Guided by RNA Modifications: The Role of SMUG1 in rRNA Quality Control. Biomolecules 2021; 11:biom11010076. [PMID: 33430019 PMCID: PMC7826747 DOI: 10.3390/biom11010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are essential for proper RNA processing, quality control, and maturation steps. In the last decade, some eukaryotic DNA repair enzymes have been shown to have an ability to recognize and process modified RNA substrates and thereby contribute to RNA surveillance. Single-strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1) is a base excision repair enzyme that not only recognizes and removes uracil and oxidized pyrimidines from DNA but is also able to process modified RNA substrates. SMUG1 interacts with the pseudouridine synthase dyskerin (DKC1), an enzyme essential for the correct assembly of small nucleolar ribonucleoproteins (snRNPs) and ribosomal RNA (rRNA) processing. Here, we review rRNA modifications and RNA quality control mechanisms in general and discuss the specific function of SMUG1 in rRNA metabolism. Cells lacking SMUG1 have elevated levels of immature rRNA molecules and accumulation of 5-hydroxymethyluridine (5hmU) in mature rRNA. SMUG1 may be required for post-transcriptional regulation and quality control of rRNAs, partly by regulating rRNA and stability.
Collapse
|
9
|
Bohnsack KE, Ficner R, Bohnsack MT, Jonas S. Regulation of DEAH-box RNA helicases by G-patch proteins. Biol Chem 2021; 402:561-579. [PMID: 33857358 DOI: 10.1515/hsz-2020-0338] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022]
Abstract
RNA helicases of the DEAH/RHA family form a large and conserved class of enzymes that remodel RNA protein complexes (RNPs) by translocating along the RNA. Driven by ATP hydrolysis, they exert force to dissociate hybridized RNAs, dislocate bound proteins or unwind secondary structure elements in RNAs. The sub-cellular localization of DEAH-helicases and their concomitant association with different pathways in RNA metabolism, such as pre-mRNA splicing or ribosome biogenesis, can be guided by cofactor proteins that specifically recruit and simultaneously activate them. Here we review the mode of action of a large class of DEAH-specific adaptor proteins of the G-patch family. Defined only by their eponymous short glycine-rich motif, which is sufficient for helicase binding and stimulation, this family encompasses an immensely varied array of domain compositions and is linked to an equally diverse set of functions. G-patch proteins are conserved throughout eukaryotes and are even encoded within retroviruses. They are involved in mRNA, rRNA and snoRNA maturation, telomere maintenance and the innate immune response. Only recently was the structural and mechanistic basis for their helicase enhancing activity determined. We summarize the molecular and functional details of G-patch-mediated helicase regulation in their associated pathways and their involvement in human diseases.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany.,Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Stefanie Jonas
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
10
|
Structural basis for the final steps of human 40S ribosome maturation. Nature 2020; 587:683-687. [PMID: 33208940 DOI: 10.1038/s41586-020-2929-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
Eukaryotic ribosomes consist of a small 40S and a large 60S subunit that are assembled in a highly coordinated manner. More than 200 factors ensure correct modification, processing and folding of ribosomal RNA and the timely incorporation of ribosomal proteins1,2. Small subunit maturation ends in the cytosol, when the final rRNA precursor, 18S-E, is cleaved at site 3 by the endonuclease NOB13. Previous structures of human 40S precursors have shown that NOB1 is kept in an inactive state by its partner PNO14. The final maturation events, including the activation of NOB1 for the decisive rRNA-cleavage step and the mechanisms driving the dissociation of the last biogenesis factors have, however, remained unresolved. Here we report five cryo-electron microscopy structures of human 40S subunit precursors, which describe the compositional and conformational progression during the final steps of 40S assembly. Our structures explain the central role of RIOK1 in the displacement and dissociation of PNO1, which in turn allows conformational changes and activation of the endonuclease NOB1. In addition, we observe two factors, eukaryotic translation initiation factor 1A domain-containing protein (EIF1AD) and leucine-rich repeat-containing protein 47 (LRRC47), which bind to late pre-40S particles near RIOK1 and the central rRNA helix 44. Finally, functional data shows that EIF1AD is required for efficient assembly factor recycling and 18S-E processing. Our results thus enable a detailed understanding of the last steps in 40S formation in human cells and, in addition, provide evidence for principal differences in small ribosomal subunit formation between humans and the model organism Saccharomyces cerevisiae.
Collapse
|
11
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
12
|
Davila Gallesio J, Hackert P, Bohnsack KE, Bohnsack MT. Sgd1 is an MIF4G domain-containing cofactor of the RNA helicase Fal1 and associates with the 5' domain of the 18S rRNA sequence. RNA Biol 2020; 17:539-553. [PMID: 31994962 PMCID: PMC7237134 DOI: 10.1080/15476286.2020.1716540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Assembly of eukaryotic ribosomal subunits is a complex and dynamic process involving the action of more than 200 trans-acting assembly factors. Although recent cryo-electron microscopy structures have provided information on architecture of several pre-ribosomal particles and the binding sites of many AFs, the RNA and protein interactions of many other AFs not captured in these snapshots still remain elusive. RNA helicases are key regulators of structural rearrangements within pre-ribosomal complexes and here we have analysed the eIF4A-like RNA helicase Fal1 and its putative cofactor Sgd1. Our data show that these proteins interact directly via the MIF4G domain of Sgd1 and that the MIF4G domain of Sgd1 stimulates the catalytic activity of Fal1 in vitro. The catalytic activity of Fal1, and the interaction between Fal1 and Sgd1, are required for efficient pre-rRNA processing at the A0, A1 and A2 sites. Furthermore, Sgd1 co-purifies the early small subunit biogenesis factors Lcp5 and Rok1, suggesting that the Fal1-Sgd1 complex likely functions within the SSU processome. In vivo crosslinking data reveal that Sgd1 binds to helix H12 of the 18S rRNA sequence and we further demonstrate that this interaction is formed by the C-terminal region of the protein, which is essential for its function in ribosome biogenesis.
Collapse
Affiliation(s)
- Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Germany
| |
Collapse
|
13
|
Baxter M, Voronkov M, Poolman T, Galli G, Pinali C, Goosey L, Knight A, Krakowiak K, Maidstone R, Iqbal M, Zi M, Prehar S, Cartwright EJ, Gibbs J, Matthews LC, Adamson AD, Humphreys NE, Rebelo-Guiomar P, Minczuk M, Bechtold DA, Loudon A, Ray D. Cardiac mitochondrial function depends on BUD23 mediated ribosome programming. eLife 2020; 9:e50705. [PMID: 31939735 PMCID: PMC7002040 DOI: 10.7554/elife.50705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023] Open
Abstract
Efficient mitochondrial function is required in tissues with high energy demand such as the heart, and mitochondrial dysfunction is associated with cardiovascular disease. Expression of mitochondrial proteins is tightly regulated in response to internal and external stimuli. Here we identify a novel mechanism regulating mitochondrial content and function, through BUD23-dependent ribosome generation. BUD23 was required for ribosome maturation, normal 18S/28S stoichiometry and modulated the translation of mitochondrial transcripts in human A549 cells. Deletion of Bud23 in murine cardiomyocytes reduced mitochondrial content and function, leading to severe cardiomyopathy and death. We discovered that BUD23 selectively promotes ribosomal interaction with low GC-content 5'UTRs. Taken together we identify a critical role for BUD23 in bioenergetics gene expression, by promoting efficient translation of mRNA transcripts with low 5'UTR GC content. BUD23 emerges as essential to mouse development, and to postnatal cardiac function.
Collapse
Affiliation(s)
- Matthew Baxter
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Maria Voronkov
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Toryn Poolman
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Gina Galli
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Christian Pinali
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Laurence Goosey
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Abigail Knight
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Karolina Krakowiak
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Robert Maidstone
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Mudassar Iqbal
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Min Zi
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Sukhpal Prehar
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Julie Gibbs
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Laura C Matthews
- Leeds Institute of Medical ResearchFaculty of Medicine and Health, University of LeedsLeedsUnited Kingdom
| | - Antony D Adamson
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Neil E Humphreys
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Pedro Rebelo-Guiomar
- Graduate Program in Areas of Basic and Applied Biology (GABBA)University of PortoPortoPortugal
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - David A Bechtold
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Andrew Loudon
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - David Ray
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| |
Collapse
|
14
|
Maurice F, Pérébaskine N, Thore S, Fribourg S. In vitro dimerization of human RIO2 kinase. RNA Biol 2019; 16:1633-1642. [PMID: 31390939 DOI: 10.1080/15476286.2019.1653679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
RIO proteins form a conserved family of atypical protein kinases. RIO2 is a serine/threonine protein kinase/ATPase involved in pre-40S ribosomal maturation. Current crystal structures of archaeal and fungal Rio2 proteins report a monomeric form of the protein. Here, we describe three atomic structures of the human RIO2 kinase showing that it forms a homodimer in vitro. Upon self-association, each protomer ATP-binding pocket is partially remodelled and found in an apostate. The homodimerization is mediated by key residues previously shown to be responsible for ATP binding and catalysis. This unusual in vitro protein kinase dimer reveals an intricate mechanism where identical residues are involved in substrate binding and oligomeric state formation. We speculate that such an oligomeric state might be formed also in vivo and might function in maintaining the protein in an inactive state and could be employed during import.
Collapse
Affiliation(s)
| | | | - Stéphane Thore
- INSERM U1212, UMR CNRS 5320, Université de Bordeaux , Bordeaux , France
| | | |
Collapse
|
15
|
Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019; 38:e100278. [PMID: 31268599 PMCID: PMC6600647 DOI: 10.15252/embj.2018100278] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Markus T Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Center for Molecular BiosciencesGeorg‐August UniversityGöttingenGermany
| |
Collapse
|