1
|
Feng Q, Lin Z, Zhao D, Li M, Yang S, Xiang AP, Ye C, Yao C. Functional inhibition of core spliceosomal machinery activates intronic premature cleavage and polyadenylation of pre-mRNAs. Cell Rep 2025; 44:115376. [PMID: 40019833 DOI: 10.1016/j.celrep.2025.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
The catalytic role of U6 snRNP in pre-mRNA splicing has been well established. In this study, we utilize an antisense morpholino oligonucleotide (AMO) specifically targeting catalytic sites of U6 snRNA to achieve functional knockdown of U6 snRNP in HeLa cells. The data show a significant increase in global intronic premature cleavage and polyadenylation (PCPA) events, similar to those observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Mechanistically, we provide evidence that U6 AMO-mediated splicing inhibition might be the driving force for PCPA as application of another specific AMO targeting U2 snRNP results in similar global PCPA effects. Together with our recently published findings that demonstrate the global inhibitory effect of U4 snRNP on intronic PCPA, our data highlight the critical role of splicing in suppressing intronic PCPA and support a model in which splicing and polyadenylation may compete with each other within introns during co-transcriptional mRNA processing.
Collapse
Affiliation(s)
- Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zejin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Danhui Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengzhao Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sheng Yang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Zhang X, Liu F, Zhou Y. Coupling of alternative splicing and alternative polyadenylation. Acta Biochim Biophys Sin (Shanghai) 2024; 57:22-32. [PMID: 39632657 PMCID: PMC11802343 DOI: 10.3724/abbs.2024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
RNA splicing and 3'-cleavage and polyadenylation (CPA) are essential processes for the maturation of RNA. There have been extensive independent studies of these regulated processing events, including alternative splicing (AS) and alternative polyadenylation (APA). However, growing evidence suggests potential crosstalk between splicing and 3'-end processing in regulating AS or APA. Here, we first provide a brief overview of the molecular machines involved in splicing and 3'-end processing events, and then review recent studies on the functions and mechanisms of the crosstalk between the two processes. On the one hand, 3'-end processing can affect splicing, as 3'-end processing factors and CPA-generated polyA tail promote the splicing of the last intron. Beyond that, 3'-end processing factors can also influence the splicing of internal and terminal exons. Those 3'-end processing factors can also interact with different RNA-binding proteins (RBPs) to exert their effects on AS. The length of 3' untranslated region (3' UTR) can affect the splicing of upstream exons. On the other hand, splicing and CPA may compete within introns in generating different products. Furthermore, splicing within the 3' UTR is a significant factor contributing to 3' UTR diversity. Splicing also influences 3'-end processing through the actions of certain splicing factors. Interestingly, some classical RBPs play dual roles in both splicing and 3'-end processing. Finally, we discuss how long-read sequencing technologies aid in understanding the coordination of AS-APA events and envision that these findings may potentially promote the development of new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xueying Zhang
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Feiyan Liu
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Yu Zhou
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
3
|
Feng Q, Zhao D, Lin Z, Li M, Xiang AP, Ye C, Yao C. U4 snRNP inhibits premature cleavage and polyadenylation of pre-mRNAs. Proc Natl Acad Sci U S A 2024; 121:e2406710121. [PMID: 38917004 PMCID: PMC11228486 DOI: 10.1073/pnas.2406710121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
The essential role of U4 snRNP in pre-messenger RNA (mRNA) splicing has been well established. In this study, we utilized an antisense morpholino oligonucleotide (AMO) specifically targeting U4 snRNA to achieve functional knockdown of U4 snRNP in HeLa cells. Our results showed that this knockdown resulted in global intronic premature cleavage and polyadenylation (PCPA) events, comparable to the effects observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Furthermore, our study suggested that this may be a common phenomenon in both human and mouse cell lines. Additionally, we showed that U4 AMO treatment disrupted transcription elongation, as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis for RNAPII. Collectively, our results identified a unique role for U4 snRNP in the inhibition of PCPA and indicated a model wherein splicing intrinsically inhibits intronic cleavage and polyadenylation in the context of cotranscriptional mRNA processing.
Collapse
Affiliation(s)
- Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Danhui Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zejin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengzhao Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
4
|
Feng Q, Lin Z, Deng Y, Ran Y, Yu R, Xiang AP, Ye C, Yao C. The U1 antisense morpholino oligonucleotide (AMO) disrupts U1 snRNP structure to promote intronic PCPA modification of pre-mRNAs. J Biol Chem 2023; 299:104854. [PMID: 37224962 PMCID: PMC10404622 DOI: 10.1016/j.jbc.2023.104854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/26/2023] Open
Abstract
Functional depletion of the U1 small nuclear ribonucleoprotein (snRNP) with a 25 nt U1 AMO (antisense morpholino oligonucleotide) may lead to intronic premature cleavage and polyadenylation of thousands of genes, a phenomenon known as U1 snRNP telescripting; however, the underlying mechanism remains elusive. In this study, we demonstrated that U1 AMO could disrupt U1 snRNP structure both in vitro and in vivo, thereby affecting the U1 snRNP-RNAP polymerase II interaction. By performing chromatin immunoprecipitation sequencing for phosphorylation of Ser2 and Ser5 of the C-terminal domain of RPB1, the largest subunit of RNAP polymerase II, we showed that transcription elongation was disturbed upon U1 AMO treatment, with a particular high phosphorylation of Ser2 signal at intronic cryptic polyadenylation sites (PASs). In addition, we showed that core 3'processing factors CPSF/CstF are involved in the processing of intronic cryptic PAS. Their recruitment accumulated toward cryptic PASs upon U1 AMO treatment, as indicated by chromatin immunoprecipitation sequencing and individual-nucleotide resolution CrossLinking and ImmunoPrecipitation sequencing analysis. Conclusively, our data suggest that disruption of U1 snRNP structure mediated by U1 AMO provides a key for understanding the U1 telescripting mechanism.
Collapse
Affiliation(s)
- Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zejin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yanhui Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yi Ran
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui Yu
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China; Advanced Medical Technology Center, The first Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Hu Z, Li M, Huo Z, Chen L, Liu S, Deng K, Lu X, Chen S, Fu Y, Xu A. U1 snRNP proteins promote proximal alternative polyadenylation sites by directly interacting with 3' end processing core factors. J Mol Cell Biol 2022; 14:mjac054. [PMID: 36073763 PMCID: PMC9926334 DOI: 10.1093/jmcb/mjac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/14/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, both alternative splicing and alternative polyadenylation (APA) play essential roles in the gene regulation network. U1 small ribonucleoprotein particle (U1 snRNP) is a major component of spliceosome, and U1 snRNP complex can suppress proximal APA sites through crosstalking with 3' end processing factors. However, here we show that both knockdown and overexpression of SNRPA, SNRPC, SNRNP70, and SNRPD2, the U1 snRNP proteins, promote the usage of proximal APA sites at the transcriptome level. SNRNP70 can drive the phase transition of PABPN1 from droplet to aggregate, which may reduce the repressive effects of PABPN1 on the proximal APA sites. Additionally, SNRNP70 can also promote the proximal APA sites by recruiting CPSF6, suggesting that the function of CPSF6 on APA is related with other RNA-binding proteins and cell context-dependent. Consequently, these results reveal that, on the contrary to U1 snRNP complex, the free proteins of U1 snRNP complex can promote proximal APA sites through the interaction with 3' end processing machinery.
Collapse
Affiliation(s)
- Zhijie Hu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Mengxia Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Zhanfeng Huo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Susu Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Ke Deng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Xin Lu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
6
|
Singh S, Shyamal S, Panda AC. Detecting RNA-RNA interactome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1715. [PMID: 35132791 DOI: 10.1002/wrna.1715] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The last decade has seen a robust increase in various types of novel RNA molecules and their complexity in gene regulation. RNA molecules play a critical role in cellular events by interacting with other biomolecules, including protein, DNA, and RNA. It has been established that RNA-RNA interactions play a critical role in several biological processes by regulating the biogenesis and function of RNA molecules. Interestingly, RNA-RNA interactions regulate the biogenesis of diverse RNA molecules, including mRNAs, microRNAs, tRNAs, and circRNAs, through splicing or backsplicing. Structured RNAs like rRNA, tRNA, and snRNAs achieve their functional conformation by intramolecular RNA-RNA interactions. In addition, functional consequences of many intermolecular RNA-RNA interactions have been extensively studied in the regulation of gene expression. Hence, it is essential to understand the mechanism and functions of RNA-RNA interactions in eukaryotes. Conventionally, RNA-RNA interactions have been identified through diverse biochemical methods for decades. The advent of high-throughput RNA-sequencing technologies has revolutionized the identification of global RNA-RNA interactome in cells and their importance in RNA structure and function in gene expression regulation. Although these technologies revealed tens of thousands of intramolecular and intermolecular RNA-RNA interactions, we further look forward to future unbiased and quantitative high-throughput technologies for detecting transcriptome-wide RNA-RNA interactions. With the ability to detect RNA-RNA interactome, we expect that future studies will reveal the higher-order structures of RNA molecules and multi-RNA hybrids impacting human health and diseases. This article is categorized under: RNA Methods > RNA Analyses In Vitro and In Silico RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Suman Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Center for Biotechnology, Faridabad, India
| | | | - Amaresh C Panda
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| |
Collapse
|
7
|
Ran Y, Huang S, Shi J, Feng Q, Deng Y, Xiang AP, Yao C. CFIm25 regulates human stem cell function independently of its role in mRNA alternative polyadenylation. RNA Biol 2022; 19:686-702. [PMID: 35491945 PMCID: PMC9067535 DOI: 10.1080/15476286.2022.2071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It has recently been shown that CFIm25, a canonical mRNA 3’ processing factor, could play a variety of physiological roles through its molecular function in the regulation of mRNA alternative polyadenylation (APA). Here, we used CRISPR/Cas9-mediated gene editing approach in human embryonic stem cells (hESCs) for CFIm25, and obtained three gene knockdown/mutant cell lines. CFIm25 gene editing resulted in higher proliferation rate and impaired differentiation potential for hESCs, with these effects likely to be directly regulated by the target genes, including the pluripotency factor rex1. Mechanistically, we unexpected found that perturbation in CFIm25 gene expression did not significantly affect cellular mRNA 3’ processing efficiency and APA profile. Rather, we provided evidences that CFIm25 may impact RNA polymerase II (RNAPII) occupancy at the body of transcribed genes, and promote the expression level of a group of transcripts associated with cellular proliferation and/or differentiation. Taken together, these results reveal novel mechanisms underlying CFIm25ʹs modulation in determination of cell fate, and provide evidence that the process of mammalian gene transcription may be regulated by an mRNA 3’ processing factor.
Collapse
Affiliation(s)
- Yi Ran
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Junjie Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yanhui Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
8
|
Abstract
U1 snRNP is one of the most abundant ribonucleoprotein (RNP) complexes in eukaryotic cells and is estimated to be approximately 1 million copies per cell. Apart from its canonical role in mRNA splicing, this complex has emerged as a key regulator of eukaryotic mRNA length via inhibition of mRNA 3'-end processing at numerous intronic polyadenylation sites, in a process that is also termed 'U1 snRNP telescripting'. Several reviews have extensively described the concept of U1 telescripting and subsequently highlighted its potential impacts in mRNA metabolism. Here, we review what is currently known regarding the underlying mechanisms of this important phenomenon and discuss open questions and future challenges.
Collapse
Affiliation(s)
- Yi Ran
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yanhui Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.,Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
9
|
Deng Y, Shi J, Ran Y, Xiang AP, Yao C. A potential mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3' processing. Biochem Biophys Res Commun 2020; 530:196-202. [PMID: 32828285 DOI: 10.1016/j.bbrc.2020.06.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022]
Abstract
It is well established that U1 snRNP inhibits the cleavage of cryptic polyadenylation site (PAS) within introns, thereby facilitating full-length mRNA transcription for numerous genes in vertebrate cells, yet the underlying mechanism remains poorly understood. Here, by using a model PAS of wdr26 mRNA, we show that U1 snRNP predominantly interferes with the association of PAS with a core 3' processing factor CstF64, which can promote the cleavage step of mRNA 3' processing. Furthermore, we provide evidence that U1A, a component of U1 snRNP, might directly interfere with CstF64 binding on PAS through its RNA binding capacity. Consistently, U1A could potentially associate with U1-suppressed intronic PASs at the transcriptome level in human cells, showing a binding peak ∼50 nt downstream of the cleavage site, as revealed by U1A iCLIP-seq (individual-nucleotide resolution UV crosslinking and immunoprecipitation coupled with RNA sequencing) analysis. Together, our data suggest a molecular mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3' processing. More generally, we argue that U1 snRNP might inhibit the usage of cryptic PASs through disturbing the recruitment of core 3' processing factors.
Collapse
Affiliation(s)
- Yanhui Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junjie Shi
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi Ran
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China; Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Abstract
RNA proximity ligation is a set of molecular biology techniques used to analyze the conformations and spatial proximity of RNA molecules within cells. A typical experiment starts with cross-linking of a biological sample using UV light or psoralen, followed by partial fragmentation of RNA, RNA-RNA ligation, library preparation, and high-throughput sequencing. In the past decade, proximity ligation has been used to study structures of individual RNAs, networks of interactions between small RNAs and their targets, and whole RNA-RNA interactomes, in models ranging from bacteria to animal tissues and whole animals. Here, we provide an overview of the field, highlight the main findings, review the recent experimental and computational developments, and provide troubleshooting advice for new users. In the final section, we draw parallels between DNA and RNA proximity ligation and speculate on possible future research directions.
Collapse
Affiliation(s)
- Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Yue Wan
- Stem Cell and Regenerative Medicine, Genome Institute of Singapore, Singapore 138672.,School of Biological Sciences, Nanyang Technological University, Singapore 637551.,Department of Biochemistry, National University of Singapore, Singapore 117596
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
11
|
Ye C, Lin J, Li QQ. Discovery of alternative polyadenylation dynamics from single cell types. Comput Struct Biotechnol J 2020; 18:1012-1019. [PMID: 32382395 PMCID: PMC7200215 DOI: 10.1016/j.csbj.2020.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative polyadenylation (APA) occurs in the process of mRNA maturation by adding a poly(A) tail at different locations, resulting increased diversity of mRNA isoforms and contributing to the complexity of gene regulatory network. Benefit from the development of high-throughput sequencing technologies, we could now delineate APA profiles of transcriptomes at an unprecedented pace. Especially the single cell RNA sequencing (scRNA-seq) technologies provide us opportunities to interrogate biological details of diverse and rare cell types. Despite increasing evidence showing that APA is involved in the cell type-specific regulation and function, efficient and specific laboratory methods for capturing poly(A) sites at single cell resolution are underdeveloped to date. In this review, we summarize existing experimental and computational methods for the identification of APA dynamics from diverse single cell types. A future perspective is also provided.
Collapse
Affiliation(s)
- Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Krooss S, Werwitzke S, Kopp J, Rovai A, Varnholt D, Wachs AS, Goyenvalle A, Aarstma-Rus A, Ott M, Tiede A, Langemeier J, Bohne J. Pathological mechanism and antisense oligonucleotide-mediated rescue of a non-coding variant suppressing factor 9 RNA biogenesis leading to hemophilia B. PLoS Genet 2020; 16:e1008690. [PMID: 32267853 PMCID: PMC7141619 DOI: 10.1371/journal.pgen.1008690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/22/2020] [Indexed: 01/25/2023] Open
Abstract
Loss-of-function mutations in the human coagulation factor 9 (F9) gene lead to hemophilia B. Here, we dissected the consequences and the pathomechanism of a non-coding mutation (c.2545A>G) in the F9 3’ untranslated region. Using wild type and mutant factor IX (FIX) minigenes we revealed that the mutation leads to reduced F9 mRNA and FIX protein levels and to lower coagulation activity of cell culture supernatants. The phenotype could not be compensated by increased transcription. The pathomechanism comprises the de novo creation of a binding site for the spliceosomal component U1snRNP, which is able to suppress the nearby F9 poly(A) site. This second, splicing-independent function of U1snRNP was discovered previously and blockade of U1snRNP restored mutant F9 mRNA expression. In addition, we explored the vice versa approach and masked the mutation by antisense oligonucleotides resulting in significantly increased F9 mRNA expression and coagulation activity. This treatment may transform the moderate/severe hemophilia B into a mild or subclinical form in the patients. This antisense based strategy is applicable to other mutations in untranslated regions creating deleterious binding sites for cellular proteins. The elucidation of the pathomechanisms of non-coding variants yields important insights into diseases as well as cellular processes causing the defect. Although these variants may account for the majority of phenotypic variation, only a minority of them can be explained mechanistically. The human coagulation factor 9 3’ UTR variant described here converts a non-essential sequence motif into a U1snRNP-binding site with deleterious effects on RNA 3’ end processing at the nearby poly(A) site. Poly(A) site suppression by U1snRNP was described before and it normally protects cellular mRNAs from premature termination. However, if misled by creation of a U1 site close the authentic poly(A) site as in the F9 3’ UTR, this nuclear surveillance mechanism results in the opposite. Since recognition by U1snRNP depends on sequence complementarity we were able to use antisense oligonucleotides to mask the mutant site and partially restored F9 mRNA levels. This antisense based strategy may be applicable to other variants in untranslated regions, which create deleterious binding sites for cellular proteins.
Collapse
Affiliation(s)
- Simon Krooss
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School and Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Sonja Werwitzke
- Clinic of Hematology, Oncology and Hemostaseology, Hannover Medical School, Hannover, Germany
| | - Johannes Kopp
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Alice Rovai
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School and Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Dirk Varnholt
- Clinic of Hematology, Oncology and Hemostaseology, Hannover Medical School, Hannover, Germany
| | - Amelie S. Wachs
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | | | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School and Twincore Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Andreas Tiede
- Clinic of Hematology, Oncology and Hemostaseology, Hannover Medical School, Hannover, Germany
| | - Jörg Langemeier
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Pediatric Intensive Care Unit, Children’s Hospital Bielefeld, Germany
- * E-mail: (JL); (JB)
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail: (JL); (JB)
| |
Collapse
|