1
|
Correia I, Oliveira C, Reis A, Guimarães AR, Aveiro S, Domingues P, Bezerra AR, Vitorino R, Moura G, Santos MAS. A Proteogenomic Pipeline for the Analysis of Protein Biosynthesis Errors in the Human Pathogen Candida albicans. Mol Cell Proteomics 2024; 23:100818. [PMID: 39047911 PMCID: PMC11420639 DOI: 10.1016/j.mcpro.2024.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/20/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Candida albicans is a diploid pathogen known for its ability to live as a commensal fungus in healthy individuals but causing both superficial infections and disseminated candidiasis in immunocompromised patients where it is associated with high morbidity and mortality. Its success in colonizing the human host is attributed to a wide range of virulence traits that modulate interactions between the host and the pathogen, such as optimal growth rate at 37 °C, the ability to switch between yeast and hyphal forms, and a remarkable genomic and phenotypic plasticity. A fascinating aspect of its biology is a prominent heterogeneous proteome that arises from frequent genomic rearrangements, high allelic variation, and high levels of amino acid misincorporations in proteins. This leads to increased morphological and physiological phenotypic diversity of high adaptive potential, but the scope of such protein mistranslation is poorly understood due to technical difficulties in detecting and quantifying amino acid misincorporation events in complex protein samples. We have developed and optimized mass spectrometry and bioinformatics pipelines capable of identifying rare amino acid misincorporation events at the proteome level. We have also analyzed the proteomic profile of an engineered C. albicans strain that exhibits high level of leucine misincorporation at protein CUG sites and employed an in vivo quantitative gain-of-function fluorescence reporter system to validate our LC-MS/MS data. C. albicans misincorporates amino acids above the background level at protein sites of diverse codons, particularly at CUG, confirming our previous data on the quantification of leucine incorporation at single CUG sites of recombinant reporter proteins, but increasing misincorporation of Leucine at these sites does not alter the translational fidelity of the other codons. These findings indicate that the C. albicans statistical proteome exceeds prior estimates, suggesting that its highly plastic phenome may also be modulated by environmental factors due to translational ambiguity.
Collapse
Affiliation(s)
- Inês Correia
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal.
| | - Carla Oliveira
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal
| | - Andreia Reis
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal
| | - Ana Rita Guimarães
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal
| | - Susana Aveiro
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ana Rita Bezerra
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal
| | - Gabriela Moura
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal
| | - Manuel A S Santos
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences (DCM), University of Aveiro, Aveiro, Portugal; Multidisciplinary Institute of Ageing (MIA-Portugal), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Marques M, Ramos B, Albuquerque H, Pereira M, Ribeiro DR, Nunes A, Sarabando J, Brás D, Ferreira AR, Vitorino R, Amorim MJ, Silva AM, Soares AR, Ribeiro D. Influenza A virus propagation requires the activation of the unfolded protein response and the accumulation of insoluble protein aggregates. iScience 2024; 27:109100. [PMID: 38405606 PMCID: PMC10884513 DOI: 10.1016/j.isci.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Influenza A virus (IAV) employs multiple strategies to manipulate cellular mechanisms and support proper virion formation and propagation. In this study, we performed a detailed analysis of the interplay between IAV and the host cells' proteostasis throughout the entire infectious cycle. We reveal that IAV infection activates the inositol requiring enzyme 1 (IRE1) branch of the unfolded protein response, and that this activation is important for an efficient infection. We further observed the accumulation of virus-induced insoluble protein aggregates, containing both viral and host proteins, associated with a dysregulation of the host cell RNA metabolism. Our data indicate that this accumulation is important for IAV propagation and favors the final steps of the infection cycle, more specifically the virion assembly. These findings reveal additional mechanisms by which IAV disrupts host proteostasis and uncovers new cellular targets that can be explored for the development of host-directed antiviral strategies.
Collapse
Affiliation(s)
- Mariana Marques
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Bruno Ramos
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Hélio Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Marisa Pereira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Diana Roberta Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Alexandre Nunes
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Jéssica Sarabando
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Brás
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Ana Rita Ferreira
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Rui Vitorino
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Maria João Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Artur M.S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Raquel Soares
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Institute of Biomedicine – iBiMED, Department of Medical Sciences University of Aveiro, Aveiro, Portugal
| |
Collapse
|
3
|
Pereira M, Ribeiro DR, Berg M, Tsai AP, Dong C, Nho K, Kaiser S, Moutinho M, Soares AR. Amyloid pathology reduces ELP3 expression and tRNA modifications leading to impaired proteostasis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166857. [PMID: 37640114 DOI: 10.1016/j.bbadis.2023.166857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by accumulation of β-amyloid aggregates and loss of proteostasis. Transfer RNA (tRNA) modifications play a crucial role in maintaining proteostasis, but their impact in AD remains unclear. Here, we report that expression of the tRNA modifying enzyme ELP3 is reduced in the brain of AD patients and amyloid mouse models and negatively correlates with amyloid plaque mean density. We further show that SH-SY5Y neuronal cells carrying the amyloidogenic Swedish familial AD mutation (SH-SWE) display reduced ELP3 levels, tRNA hypomodifications and proteostasis impairments when compared to cells not carrying the mutation (SH-WT). Additionally, exposing SH-WT cells to the secretome of SH-SWE cells led to reduced ELP3 expression, wobble uridine tRNA hypomodification, and increased protein aggregation. Importantly, correcting tRNA deficits due to ELP3 reduction reverted proteostasis impairments. These findings suggest that amyloid pathology dysregulates proteostasis by reducing ELP3 expression and tRNA modification levels, and that targeting tRNA modifications may be a potential therapeutic avenue to restore neuronal proteostasis in AD and preserve neuronal function.
Collapse
Affiliation(s)
- Marisa Pereira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Diana R Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Maximilian Berg
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, 60438, Germany
| | - Andy P Tsai
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Chuanpeng Dong
- Department of Medical and Molecular Genetics, Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stefanie Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, 60438, Germany
| | - Miguel Moutinho
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ana R Soares
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Hasan F, Lant JT, O'Donoghue P. Perseverance of protein homeostasis despite mistranslation of glycine codons with alanine. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220029. [PMID: 36633285 PMCID: PMC9835607 DOI: 10.1098/rstb.2022.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 01/13/2023] Open
Abstract
By linking amino acids to their codon assignments, transfer RNAs (tRNAs) are essential for protein synthesis and translation fidelity. Some human tRNA variants cause amino acid mis-incorporation at a codon or set of codons. We recently found that a naturally occurring tRNASer variant decodes phenylalanine codons with serine and inhibits protein synthesis. Here, we hypothesized that human tRNA variants that misread glycine (Gly) codons with alanine (Ala) will also disrupt protein homeostasis. The A3G mutation occurs naturally in tRNAGly variants (tRNAGlyCCC, tRNAGlyGCC) and creates an alanyl-tRNA synthetase (AlaRS) identity element (G3 : U70). Because AlaRS does not recognize the anticodon, the human tRNAAlaAGC G35C (tRNAAlaACC) variant may function similarly to mis-incorporate Ala at Gly codons. The tRNAGly and tRNAAla variants had no effect on protein synthesis in mammalian cells under normal growth conditions; however, tRNAGlyGCC A3G depressed protein synthesis in the context of proteasome inhibition. Mass spectrometry confirmed Ala mistranslation at multiple Gly codons caused by the tRNAGlyGCC A3G and tRNAAlaAGC G35C mutants, and in some cases, we observed multiple mistranslation events in the same peptide. The data reveal mistranslation of Ala at Gly codons and defects in protein homeostasis generated by natural human tRNA variants that are tolerated under normal conditions. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
MESH Headings
- Humans
- Alanine/genetics
- Alanine/chemistry
- Alanine/metabolism
- Alanine-tRNA Ligase/chemistry
- Alanine-tRNA Ligase/genetics
- Alanine-tRNA Ligase/metabolism
- Codon/genetics
- Glycine/genetics
- Glycine/metabolism
- Protein Biosynthesis
- Proteostasis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Ala/chemistry
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ala/metabolism
- RNA, Transfer, Gly/metabolism
Collapse
Affiliation(s)
- Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
5
|
Lant JT, Hasan F, Briggs J, Heinemann IU, O’Donoghue P. Genetic Interaction of tRNA-Dependent Mistranslation with Fused in Sarcoma Protein Aggregates. Genes (Basel) 2023; 14:518. [PMID: 36833445 PMCID: PMC9956149 DOI: 10.3390/genes14020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julia Briggs
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
6
|
Frankowska N, Bryl E, Fulop T, Witkowski JM. Longevity, Centenarians and Modified Cellular Proteodynamics. Int J Mol Sci 2023; 24:ijms24032888. [PMID: 36769212 PMCID: PMC9918038 DOI: 10.3390/ijms24032888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
We have shown before that at least one intracellular proteolytic system seems to be at least as abundant in the peripheral blood lymphocytes of centenarians as in the same cells of young individuals (with the cells of the elderly population showing a significant dip compared to both young and centenarian cohorts). Despite scarce published data, in this review, we tried to answer the question how do different types of cells of longevous people-nonagenarians to (semi)supercentenarians-maintain the quality and quantity of their structural and functional proteins? Specifically, we asked if more robust proteodynamics participate in longevity. We hypothesized that at least some factors controlling the maintenance of cellular proteomes in centenarians will remain at the "young" level (just performing better than in the average elderly). In our quest, we considered multiple aspects of cellular protein maintenance (proteodynamics), including the quality of transcribed DNA, its epigenetic changes, fidelity and quantitative features of transcription of both mRNA and noncoding RNAs, the process of translation, posttranslational modifications leading to maturation and functionalization of nascent proteins, and, finally, multiple facets of the process of elimination of misfolded, aggregated, and otherwise dysfunctional proteins (autophagy). We also included the status of mitochondria, especially production of ATP necessary for protein synthesis and maintenance. We found that with the exception of the latter and of chaperone function, practically all of the considered aspects did show better performance in centenarians than in the average elderly, and most of them approached the levels/activities seen in the cells of young individuals.
Collapse
Affiliation(s)
- Natalia Frankowska
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Jacek M. Witkowski
- Department of Physiopathology, Medical University of Gdansk, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-349-1510
| |
Collapse
|
7
|
Yuan D, Chu J, Lin H, Zhu G, Qian J, Yu Y, Yao T, Ping F, Chen F, Liu X. Mechanism of homocysteine-mediated endothelial injury and its consequences for atherosclerosis. Front Cardiovasc Med 2023; 9:1109445. [PMID: 36727029 PMCID: PMC9884709 DOI: 10.3389/fcvm.2022.1109445] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Homocysteine (Hcy) is an intermediate amino acid formed during the conversion from methionine to cysteine. When the fasting plasma Hcy level is higher than 15 μmol/L, it is considered as hyperhomocysteinemia (HHcy). The vascular endothelium is an important barrier to vascular homeostasis, and its impairment is the initiation of atherosclerosis (AS). HHcy is an important risk factor for AS, which can promote the development of AS and the occurrence of cardiovascular events, and Hcy damage to the endothelium is considered to play a very important role. However, the mechanism by which Hcy damages the endothelium is still not fully understood. This review summarizes the mechanism of Hcy-induced endothelial injury and the treatment methods to alleviate the Hcy induced endothelial dysfunction, in order to provide new thoughts for the diagnosis and treatment of Hcy-induced endothelial injury and subsequent AS-related diseases.
Collapse
|
8
|
Perossi IFS, Saito MM, Varallo GR, de Godoy BLV, Colombo J, Zuccari DAPC. Protein Expression of PI3K/AKT/mTOR Pathway Targets Validated by Gene Expression and its Correlation with Prognosis in Canine Mammary Cancer. J Mammary Gland Biol Neoplasia 2022; 27:241-252. [PMID: 36323932 DOI: 10.1007/s10911-022-09527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 12/31/2022] Open
Abstract
Mammary cancer is the main type of neoplasia in female dogs and is considered an adequate model for the biological and therapeutic study of cancer in women. The PIK3CA/AKT/mTOR pathway plays a central role in cellular homeostasis and is often dysregulated in cancer. The increased expression of PI3K protein in the literature is associated with a poor prognosis, and alterations in the PIK3CA gene can lead to changes in downstream pathways. Thus, the objective of this study was to validate the protein expression to confirm the gene expression of proteins belonging to the main pathway PI3K and PTEN, and their downstream pathways through ZEB1, ZEB2, HIF1A, VHL, CASP3 and PARP1 relating to prognosis in canine mammary cancer. For protein studies, the samples came from 58 female dogs with mammary neoplasia, immunohistochemistry was performed and its analysis by the histoscore method. For the genetic evaluation, the samples came from 13 patients, the DNA was extracted and the analysis for quantitative expression. Through immunohistochemistry, PI3K positivity was significantly associated with affected regional lymph node, distant metastasis, patients with HER2+, Triple Negative and Luminal B phenotypes, and the lowest survival rates. Through gene expression, we observed higher gene expression of ZEB2 and PARP1 both among patients who were alive and who died, which was not true for the expressions of PIK3CA and HIF1A. In conclusion, the data observed in this work are promising in the study of new molecular prognostic markers such as PI3K, ZEB2 and PARP1 for canine mammary cancer.
Collapse
Affiliation(s)
- Isabela F S Perossi
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) UNESP, São José do Rio Preto, Brazil.
| | - Mylena M Saito
- Centro Universitário de Rio Preto (UNIRP), São José do Rio Preto, Brazil
| | | | | | - Jucimara Colombo
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Debora A P C Zuccari
- Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| |
Collapse
|
9
|
Proteostasis Response to Protein Misfolding in Controlled Hypertension. Cells 2022; 11:cells11101686. [PMID: 35626723 PMCID: PMC9139827 DOI: 10.3390/cells11101686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is the most determinant risk factor for cardiovascular diseases. Early intervention and future therapies targeting hypertension mechanisms may improve the quality of life and clinical outcomes. Hypertension has a complex multifactorial aetiology and was recently associated with protein homeostasis (proteostasis). This work aimed to characterize proteostasis in easy-to-access plasma samples from 40 individuals, 20 with controlled hypertension and 20 age- and gender-matched normotensive individuals. Proteostasis was evaluated by quantifying the levels of protein aggregates through different techniques, including fluorescent probes, slot blot immunoassays and Fourier-transform infrared spectroscopy (FTIR). No significant between-group differences were observed in the absolute levels of various protein aggregates (Proteostat or Thioflavin T-stained aggregates; prefibrillar oligomers and fibrils) or total levels of proteostasis-related proteins (Ubiquitin and Clusterin). However, significant positive associations between Endothelin 1 and protein aggregation or proteostasis biomarkers (such as fibrils and ubiquitin) were only observed in the hypertension group. The same is true for the association between the proteins involved in quality control and protein aggregates. These results suggest that proteostasis mechanisms are actively engaged in hypertension as a coping mechanism to counteract its pathological effects in proteome stability, even when individuals are chronically medicated and presenting controlled blood pressure levels.
Collapse
|
10
|
Santos M, Fidalgo A, Varanda AS, Soares AR, Almeida GM, Martins D, Mendes N, Oliveira C, Santos MAS. Upregulation of tRNA-Ser-AGA-2-1 Promotes Malignant Behavior in Normal Bronchial Cells. Front Mol Biosci 2022; 9:809985. [PMID: 35586191 PMCID: PMC9108184 DOI: 10.3389/fmolb.2022.809985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Serine tRNAs (tRNASer) are frequently overexpressed in tumors and associated with poor prognosis and increased risk of recurrence in breast cancer. Impairment of tRNA biogenesis and abundance also impacts proteome homeostasis, and activates protein quality control systems. Herein, we aimed at testing whether increasing tRNASer abundance could foster tumor establishment through activation of the UPR. In order to do so, firstly we confirmed that the expression of tRNA-Ser-AGA-2-1 [hereafter tRNASer(AGA)] was upregulated by 1.79-fold in Stage I NSCLC tumors when compared to normal adjacent tissue. To study the impact of tRNASer(AGA) in early stage tumorigenesis, we induced its upregulation in a non-tumoral bronchial cell line, BEAS-2B. Upregulation of this tRNA increased cellular proliferation and protein synthesis rate, driven by eIF2α dephosphorylation and ATF4 activation downstream of PERK signaling. Futhermore, tRNASer(AGA) enhanced transformation potential in vitro, and promoted the establishment of slow growing tumors with aggressive features in nude mice. Our work highlights the importance of studying tRNA deregulation on early stage tumorigenesis, as they may be potential malignancy and aggressiveness biomarkers.
Collapse
Affiliation(s)
- Mafalda Santos
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Fidalgo
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Sofia Varanda
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Raquel Soares
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
| | - Gabriela M. Almeida
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department Pathology, Medical Faculty of Porto, Porto, Portugal
| | - Diana Martins
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
| | - Nuno Mendes
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
| | - Carla Oliveira
- Expression Regulation in Cancer, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology University of Porto (IPATIMUP), Porto, Portugal
- Department Pathology, Medical Faculty of Porto, Porto, Portugal
- *Correspondence: Carla Oliveira, ; Manuel A. S. Santos,
| | - Manuel A. S. Santos
- Department of Medical Sciences, Institute of Biomedicine – iBiMED, University of Aveiro, Aveiro, Portugal
- *Correspondence: Carla Oliveira, ; Manuel A. S. Santos,
| |
Collapse
|
11
|
Farrawell NE, Yerbury JJ. Mutant Cu/Zn Superoxide Dismutase (A4V) Turnover Is Altered in Cells Containing Inclusions. Front Mol Neurosci 2021; 14:771911. [PMID: 34803609 PMCID: PMC8597841 DOI: 10.3389/fnmol.2021.771911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
SOD1 mutations account for ∼20% of familial amyotrophic lateral sclerosis (ALS) cases in which the hallmark pathological feature is insoluble SOD1 aggregates within motor neurons. Here, we investigated the degradation and synthesis of mutant SOD1 to determine whether the aggregation of mutant SOD1A4V affects these processes. We confirm that, in general, the degradation of mutant SOD1A4V occurs at a significantly faster rate than wild-type SOD1. We also report that the turnover and synthesis of mutant SOD1A4V is impaired in the presence of insoluble SOD1A4V aggregates. However, the timing of aggregation of SOD1A4V did not coincide with UPS dysfunction. Together, these results reveal the impact of SOD1 aggregation on protein degradation pathways, highlighting the importance of the UPS in preventing neurodegenerative disorders such as ALS.
Collapse
Affiliation(s)
- Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
12
|
Lant JT, Kiri R, Duennwald ML, O'Donoghue P. Formation and persistence of polyglutamine aggregates in mistranslating cells. Nucleic Acids Res 2021; 49:11883-11899. [PMID: 34718744 PMCID: PMC8599886 DOI: 10.1093/nar/gkab898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T Lant
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Rashmi Kiri
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Martin L Duennwald
- Department of Anatomy & Cell Biology, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
13
|
Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Res Rev 2020; 62:101119. [PMID: 32603841 DOI: 10.1016/j.arr.2020.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Protein aggregation is a phenomenon of major relevance in neurodegenerative and neuromuscular disorders, cataracts, diabetes and many other diseases. Research has unveiled that proteins also aggregate in multiple tissues during healthy aging yet, the biological and biomedical relevance of this apparently asymptomatic phenomenon remains to be understood. It is known that proteome homeostasis (proteostasis) is maintained by a balanced protein synthesis rate, high protein synthesis accuracy, efficient protein folding and continual tagging of damaged proteins for degradation, suggesting that protein aggregation during healthy aging may be associated with alterations in both protein synthesis and the proteostasis network (PN) pathways. In particular, dysregulation of protein synthesis and alterations in translation fidelity are hypothesized to lead to the production of misfolded proteins which could explain the occurrence of age-related protein aggregation. Nevertheless, some data on this topic is controversial and the biological mechanisms that lead to widespread protein aggregation remain to be elucidated. We review the recent literature about the age-related decline of proteostasis, highlighting the need to build an integrated view of protein synthesis rate, fidelity and quality control pathways in order to better understand the proteome alterations that occur during aging and in age-related diseases.
Collapse
|