1
|
Ma X, Tang Y, Feng Z, Yin X, Meng Y, Yin X, Xie T. An organ-specific transcriptome atlas of Curcuma wenyujin: MicroRNAs, phasiRNAs, and metabolic pathways. THE PLANT GENOME 2025; 18:e20564. [PMID: 39921320 PMCID: PMC11806286 DOI: 10.1002/tpg2.20564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 02/10/2025]
Abstract
Curcuma wenyujin Y. H. Chen et C. Ling (C. wenyujin) is a medicinal plant widely used for clinical treatments. In this study, integrated omics data analyses enabled us to discover the microRNAs (miRNAs) and the phased small interfering RNAs (phasiRNAs) on a transcriptome-wide scale. A total of 186 mature miRNAs and 23 precursors were reported. Besides, 31 miRNAs of 14 families were organ-specifically expressed, and 13 of these miRNAs could perform organ-specific target regulation. More than 80% of the phasiRNA loci were organ-specifically expressed, especially in tubers. In some cases, phasiRNAs with distinct increments, but with accordant organ-specific expression patterns, were generated from a highly overlapped region, indicating that different machineries might be synchronously engaged in phasiRNA processing. Based on the transcriptome assembly, 28 and 56 tuber-specific genes were identified to be involved in alkaloid and terpenoid metabolisms, respectively. Analysis of the enzyme-coding genes of the β-elemene biosynthetic pathway showed that the downstream genes were tuber-specific, while the upstream genes were not. We assumed that the precursor metabolites produced in the other organs might be delivered to the tubers for the final steps of β-elemene biosynthesis. Summarily, our report provided an organ-specific transcriptome atlas of C. wenyujin, which could serve as the basis for the molecular studies on organ development and secondary metabolisms in this plant.
Collapse
Affiliation(s)
- Xiaoxia Ma
- School of PharmacyHangzhou Normal UniversityHangzhouChina
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yinju Tang
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Zedi Feng
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Xiu Yin
- School of PharmacyHangzhou Normal UniversityHangzhouChina
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yijun Meng
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
| | - Xiaopu Yin
- School of PharmacyHangzhou Normal UniversityHangzhouChina
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Tian Xie
- School of PharmacyHangzhou Normal UniversityHangzhouChina
- College of Life and Environmental SciencesHangzhou Normal UniversityHangzhouChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, and Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
2
|
Yang S, Liu J, Cao L, Chen J, Duan P. Integrated analysis of transcriptome, sRNAome, and degradome involved in the drought-response of maize Zhengdan958. Open Life Sci 2025; 20:20221044. [PMID: 39881824 PMCID: PMC11773455 DOI: 10.1515/biol-2022-1044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/31/2025] Open
Abstract
Drought is a major abiotic stress in restricting the growth, development, and yield of maize. As a significant epigenetic regulator, small RNA also functions in connecting the transcriptional and post-transcriptional regulatory network. Further to help comprehending the molecular mechanisms underlying drought adaptability and tolerance of maize, an integrated multi-omics analysis of transcriptome, sRNAome, and degradome was performed on the seedling roots of an elite hybrid Zhengdan958 under drought stress. In this study, 2,911 genes, 32 conserved miRNAs, and 12 novel miRNAs showed a significantly differential expression under drought stress. Moreover, 6,340 target genes of 445 miRNAs were validated using degradome sequencing, forming 281 miRNA-mRNA pairs in control (CK) and drought-stressed (DS) library. These target genes were mainly involved in the plant hormone signal transduction and phenylpropanoid biosynthesis pathways. The integrated multi-omics analysis revealed that five DEmiRNA-mRNA pairs displayed negatively correlated expression patterns, which were also verified by qRT-PCR. Tissue-specific expression profile and regulatory network analysis revealed that miR528a/b-Zm00001d021850, miR408a/b-Zm00001d020794, and miR164e-Zm00001d003414 might be essential in root-specific drought stress response of maize Zhengdan958 seedlings. These worthwhile will promote the functional characterization of miRNA-mRNA modules response to drought stress, and potentially contribute to drought-resistance breeding of maize.
Collapse
Affiliation(s)
- Shuqiong Yang
- Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China
| | - Jiafei Liu
- Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China
| | - Lingling Cao
- Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China
| | - Jibao Chen
- Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China
| | - Pengfei Duan
- Henan Provincial Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
3
|
Feng Z, Ma X, Wu X, Wu W, Shen B, Li S, Tang Y, Wang J, Shao C, Meng Y. Genome-wide identification of phasiRNAs in Arabidopsis thaliana, and insights into biogenesis, temperature sensitivity, and organ specificity. PLANT, CELL & ENVIRONMENT 2024; 47:3797-3812. [PMID: 38798197 DOI: 10.1111/pce.14974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
The knowledge of biogenesis and target regulation of the phased small interfering RNAs (phasiRNAs) needs continuous update, since the phasiRNA loci are dynamically evolved in plants. Here, hundreds of phasiRNA loci of Arabidopsis thaliana were identified in distinct tissues and under different temperature. In flowers, most of the 24-nt loci are RNA-dependent RNA polymerase 2 (RDR2)-dependent, while the 21-nt loci are RDR6-dependent. Among the RDR-dependent loci, a significant portion is Dicer-like 1-dependent, indicating the involvement of microRNAs in their expression. Besides, two TAS candidates were discovered. Some interesting features of the phasiRNA loci were observed, such as the strong strand bias of phasiRNA generation, and the capacity of one locus for producing phasiRNAs by different increments. Both organ specificity and temperature sensitivity were observed for phasiRNA expression. In leaves, the TAS genes are highly activated under low temperature. Several trans-acting siRNA-target pairs are also temperature-sensitive. In many cases, the phasiRNA expression patterns correlate well with those of the processing signals. Analysis of the rRNA-depleted degradome uncovered several phasiRNA loci to be RNA polymerase II-independent. Our results should advance the understanding on phasiRNA biogenesis and regulation in plants.
Collapse
Affiliation(s)
- Zedi Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaoxia Ma
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
| | - Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Wenyuan Wu
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou Normal University, Hangzhou, China
| | - Bo Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shaolei Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yinju Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - JiaCen Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chaogang Shao
- College of Life Sciences, Huzhou University, Huzhou, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
4
|
Mukherjee A, Islam S, Kieser RE, Kiss DL, Mukherjee C. Long noncoding RNAs are substrates for cytoplasmic capping enzyme. FEBS Lett 2023; 597:947-961. [PMID: 36856012 PMCID: PMC11119571 DOI: 10.1002/1873-3468.14603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 03/02/2023]
Abstract
Cytoplasmic capping returns a cap to specific mRNAs, thus protecting uncapped RNAs from decay. Prior to the identification of cytoplasmic capping, uncapped mRNAs were thought to be degraded. Here, we test whether long noncoding RNAs (lncRNAs) are substrates of the cytoplasmic capping enzyme (cCE). The subcellular localisation of 14 lncRNAs associated with sarcomas were examined in U2OS osteosarcoma cells. We used 5' rapid amplification of cDNA ends (RACE) to assay uncapped forms of these lncRNAs. Inhibiting cytoplasmic capping elevated uncapped forms of selected lncRNAs indicating a plausible role of cCE in targeting them. Analysis of published cap analysis of gene expression (CAGE) data shows increased prevalence of certain 5'-RACE cloned sequences, suggesting that these uncapped lncRNAs are targets of cytoplasmic capping.
Collapse
Affiliation(s)
- Avik Mukherjee
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Safirul Islam
- Institute of Health Sciences, Presidency University, Kolkata, India
| | - Rachel E Kieser
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
- Weill Cornell Medical College, New York, NY, USA
- Houston Methodist Cancer Center, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | | |
Collapse
|
5
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
6
|
Wong DCJ, Peakall R. Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond. FRONTIERS IN PLANT SCIENCE 2022; 13:910362. [PMID: 35712597 PMCID: PMC9196242 DOI: 10.3389/fpls.2022.910362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 06/10/2023]
Abstract
The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.
Collapse
|
7
|
Keller A, Gröger L, Tschernig T, Solomon J, Laham O, Schaum N, Wagner V, Kern F, Schmartz GP, Li Y, Borcherding A, Meier C, Wyss-Coray T, Meese E, Fehlmann T, Ludwig N. miRNATissueAtlas2: an update to the human miRNA tissue atlas. Nucleic Acids Res 2021; 50:D211-D221. [PMID: 34570238 PMCID: PMC8728130 DOI: 10.1093/nar/gkab808] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Small non-coding RNAs (sncRNAs) are pervasive regulators of physiological and pathological processes. We previously developed the human miRNA Tissue Atlas, detailing the expression of miRNAs across organs in the human body. Here, we present an updated resource containing sequencing data of 188 tissue samples comprising 21 organ types retrieved from six humans. Sampling the organs from the same bodies minimizes intra-individual variability and facilitates the making of a precise high-resolution body map of the non-coding transcriptome. The data allow shedding light on the organ- and organ system-specificity of piwi-interacting RNAs (piRNAs), transfer RNAs (tRNAs), microRNAs (miRNAs) and other non-coding RNAs. As use case of our resource, we describe the identification of highly specific ncRNAs in different organs. The update also contains 58 samples from six tissues of the Tabula Muris collection, allowing to check if the tissue specificity is evolutionary conserved between Homo sapiens and Mus musculus. The updated resource of 87 252 non-coding RNAs from nine non-coding RNA classes for all organs and organ systems is available online without any restrictions (https://www.ccb.uni-saarland.de/tissueatlas2).
Collapse
Affiliation(s)
- Andreas Keller
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany.,Department of Neurology and Neurobiology, Stanford University, CA 94305, USA
| | - Laura Gröger
- Center for Human and Molecular Biology, Junior Research Group Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Thomas Tschernig
- Institute for Anatomy, Saarland University, 66421 Homburg, Germany
| | - Jeffrey Solomon
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Omar Laham
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Nicholas Schaum
- Department of Neurology and Neurobiology, Stanford University, CA 94305, USA
| | - Viktoria Wagner
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Georges Pierre Schmartz
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Yongping Li
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | | | - Carola Meier
- Institute for Anatomy, Saarland University, 66421 Homburg, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurobiology, Stanford University, CA 94305, USA
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Nicole Ludwig
- Center for Human and Molecular Biology, Junior Research Group Human Genetics, Saarland University, 66421 Homburg, Germany
| |
Collapse
|