1
|
Day JK, Palmero BJ, Allred AL, Li J, Hooda FB, Witte G, Dejneka AM, Sandler AM, Kirk KE. Trafficking of the telomerase RNA using a novel genetic approach. PLoS One 2025; 20:e0313178. [PMID: 40173139 PMCID: PMC11964246 DOI: 10.1371/journal.pone.0313178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/09/2025] [Indexed: 04/04/2025] Open
Abstract
Telomeres are specialized nucleoprotein structures situated at eukaryotic chromosome ends, vital for preserving genetic information during cell replication. Telomerase, a holoenzyme composed of telomerase reverse transcriptase and an RNA template component, is responsible for elongating telomeric DNA. The intracellular trafficking of the telomerase RNA (TER) varies, either staying in the nucleus or exiting to the cytoplasm, depending on the organism. For example, in Saccharomyces cerevisiae, the RNA template is exported to the cytoplasm, whereas in mammalian cells and protozoa, it remains within the nucleus. Aspergillus nidulans, a filamentous fungus, offers an outstanding model for investigating telomeres and telomerase due to its characterized telomerase components, exceptionally short and tightly regulated telomeres, and innovative heterokaryon rescue technique. To determine the pathway of telomerase RNA trafficking in A. nidulans, we leveraged its unique capabilities to exist in both uni- and multi-nucleate states within a heterokaryon. This involved creating a TER knockout A. nidulans strain (TERΔ) and examining the resulting colonies for signs of heterokaryon formation. Heterokaryons would imply the export of TER from one nucleus and its import into a TERΔ nucleus. Interestingly, the TERΔ strain consistently failed to produce heterokaryons, instead giving rise to likely diploid colonies. This surprising finding strongly implies that telomerase assembly predominantly takes place within the nucleus of A. nidulans, distinguishing it from the biogenesis and trafficking pattern observed in yeast.
Collapse
Affiliation(s)
- Jessica K. Day
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Brett J. Palmero
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Amanda L. Allred
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Junya Li
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Fatima B. Hooda
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Graeme Witte
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Alexandra M. Dejneka
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Anna M. Sandler
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Karen E. Kirk
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| |
Collapse
|
2
|
Jones-Weinert C, Mainz L, Karlseder J. Telomere function and regulation from mouse models to human ageing and disease. Nat Rev Mol Cell Biol 2025; 26:297-313. [PMID: 39614014 DOI: 10.1038/s41580-024-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 12/01/2024]
Abstract
Telomeres protect the ends of chromosomes but shorten following cell division in the absence of telomerase activity. When telomeres become critically short or damaged, a DNA damage response is activated. Telomeres then become dysfunctional and trigger cellular senescence or death. Telomere shortening occurs with ageing and may contribute to associated maladies such as infertility, neurodegeneration, cancer, lung dysfunction and haematopoiesis disorders. Telomere dysfunction (sometimes without shortening) is associated with various diseases, known as telomere biology disorders (also known as telomeropathies). Telomere biology disorders include dyskeratosis congenita, Høyeraal-Hreidarsson syndrome, Coats plus syndrome and Revesz syndrome. Although mouse models have been invaluable in advancing telomere research, full recapitulation of human telomere-related diseases in mice has been challenging, owing to key differences between the species. In this Review, we discuss telomere protection, maintenance and damage. We highlight the differences between human and mouse telomere biology that may contribute to discrepancies between human diseases and mouse models. Finally, we discuss recent efforts to generate new 'humanized' mouse models to better model human telomere biology. A better understanding of the limitations of mouse telomere models will pave the road for more human-like models and further our understanding of telomere biology disorders, which will contribute towards the development of new therapies.
Collapse
Affiliation(s)
| | - Laura Mainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jan Karlseder
- The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
3
|
Qiu X, Yang Z, Zhang C, Ma A, Zong X, Chen C, Zhou Y, Han J, Yu Y, Li B, Xu C, Zhang J, Zhu X. Integration of eQTL and multi-omics comprehensive analysis of triacylglycerol synthase 1 (TGS1) as a prognostic and immunotherapeutic biomarker across pan-cancer. Int J Biol Macromol 2025; 284:137862. [PMID: 39581398 DOI: 10.1016/j.ijbiomac.2024.137862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
An increasing number of expression quantitative trait loci (eQTLs) have been linked to tumorigenesis. In this study, we used Mendelian randomization (MR) to identify a novel cancer susceptibility gene, Trimethylguanosine Synthase 1 (TGS1). TGS1-induced hypermethylation at the 5' end of human telomerase RNA (hTR) impedes hTR accumulation, decreasing telomerase assembly factor levels and thus limiting telomere elongation, a crucial factor in tumor progression. Despite its significant role in cancer development, the TGS1-cancer relationship requires further experimental validation and bioinformatics analysis. To bridge this knowledge gap, we performed a comprehensive pan-cancer study using MR to evaluate TGS1's involvement in cancer progression. Leveraging data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we analyzed TGS1's role in 33 tumor types. The results indicated higher TGS1 expression in most tumors, with a significant correlation to patient prognosis. We also noted variations in TGS1 phosphorylation at different sites and a strong link between TGS1 expression and the infiltration of various immune cells. In addition, our enrichment analysis of TGS1-associated genes shed light on the molecular mechanisms involved. The study also highlighted TGS1's significant role in cellular apoptosis. Overall, our findings offer an in-depth analysis of TGS1's oncogenic roles across multiple tumor types and underscore its potential as an oncogene, biomarker, and gene therapy target in diverse cancers.
Collapse
Affiliation(s)
- Xinhui Qiu
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Ziqing Yang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Chengyuan Zhang
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Anquan Ma
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Xiaoyang Zong
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Chaojun Chen
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China
| | - Yanhan Zhou
- School of Mechanical Engineering, Shandong University, Jinan, PR China
| | - Jinghong Han
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Yingzhe Yu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China
| | - Bingsong Li
- Centre for Health Management and Policy Research, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chunming Xu
- Xinjiang Medical University, Urumqi, PR China
| | - Jun Zhang
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, PR China.
| | - Xiaobo Zhu
- The Second Clinical Medical College, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, PR China; Children's Medical Center, The Second Hospital of Shandong University, Jinan 250033, PR China.
| |
Collapse
|
4
|
Kageler L, Aquilanti E. Discovery of telomerase inhibitors: existing strategies and emerging innovations. Biochem Soc Trans 2024; 52:1957-1968. [PMID: 39194999 DOI: 10.1042/bst20230264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Telomerase, crucial for maintaining telomere length, is an attractive target for cancer therapy due to its role in cellular immortality. Despite three decades of research efforts, no small-molecule telomerase inhibitors have been clinically approved, highlighting the extensive challenges in developing effective telomerase-based therapeutics. This review examines conventional and emerging methods to measure telomerase activity and discusses existing inhibitors, including oligonucleotides and small molecules. Furthermore, this review highlights recent breakthroughs in structural studies of telomerase using cryo-electron microscopy, which can facilitate improved structure-based drug design. Altogether, advancements in structural methodologies and high-throughput screening offer promising prospects for telomerase-based cancer therapeutic development.
Collapse
Affiliation(s)
- Lauren Kageler
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, U.S.A
| | - Elisa Aquilanti
- Division of Neuro Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, U.S.A
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, U.S.A
| |
Collapse
|
5
|
Wei X, Zhou Y, Shao E, Shi X, Han Y, Zhang Y, Wei G, Zheng H, Huang S, Chen Y, Sun J, Liao Y, Liao W, Wang Y, Bin J, Li X. Tert promotes cardiac regenerative repair after MI through alleviating ROS-induced DNA damage response in cardiomyocyte. Cell Death Discov 2024; 10:381. [PMID: 39187478 PMCID: PMC11347641 DOI: 10.1038/s41420-024-02135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Telomerase reverse transcriptase (Tert) has been found to have a protective effect on telomeric DNA, but whether it could improve the repair of reactive oxygen species (ROS)-induced DNA damage and promote myocardial regenerative repair after myocardial infarction (MI) by protecting telomeric DNA is unclear. The immunofluorescence staining with TEL-CY3 and the TeloTAGGG Telomerase PCR ELISA kit were used to show the telomere length and telomerase activity. The heart-specific Tert-deletion homozygotes were generated by using commercial Cre tool mice and flox heterozygous mice for mating. We measured the telomere length and telomerase activity of mouse cardiomyocytes (CMs) at different days of age, and the results showed that they were negatively correlated with age. Overexpressed Tert could enhance telomerase activity and lengthen telomeres, thereby repairing the DNA damage induced by ROS and promoting CM proliferation in vitro. The in vivo results indicated that enhanced Tert could significantly improve cardiac function and prognosis by alleviating CM DNA damage and promoting angiogenesis post-MI. In terms of mechanism, DNA pulldown assay was used to identify that nuclear ribonucleoprotein A2B1 (hnRNPA2B1) could be an upstream regulator of Tert in CMs. Overexpressed Tert could activate the NF-κB signaling pathway in CMs and bind to the VEGF promoter in the endothelium to increase the VEGF level. Further immunoblotting showed that Tert protected DNA from ROS-induced damage by inhibiting ATM phosphorylation and blocking the Chk1/p53/p21 pathway activation. HnRNPA2B1-activated Tert could repair the ROS-induced telomeric DNA damage to induce the cell cycle re-entry in CMs and enhance the interaction between CMs and endothelium, thus achieving cardiac regenerative repair after MI.
Collapse
Affiliation(s)
- Xiaomin Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yilin Zhou
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Enge Shao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Xiaoran Shi
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yeshen Zhang
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guoquan Wei
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Hao Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Senlin Huang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Yanmei Chen
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Jie Sun
- Department of Cardiology, Zhongshan City People's Hospital, Zhongshan, China
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China
| | - Wangjun Liao
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
- Department of Oncology, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Yanbing Wang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| | - Xinzhong Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, China.
| |
Collapse
|
6
|
Kao TL, Huang YC, Chen YH, Baumann P, Tseng CK. LARP3, LARP7, and MePCE are involved in the early stage of human telomerase RNA biogenesis. Nat Commun 2024; 15:5955. [PMID: 39009594 PMCID: PMC11250828 DOI: 10.1038/s41467-024-50422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Human telomerase assembly is a highly dynamic process. Using biochemical approaches, we find that LARP3 and LARP7/MePCE are involved in the early stage of human telomerase RNA (hTR) and that their binding to RNA is destabilized when the mature form is produced. LARP3 plays a negative role in preventing the processing of the 3'-extended long (exL) form and the binding of LARP7 and MePCE. Interestingly, the tertiary structure of the exL form prevents LARP3 binding and facilitates hTR biogenesis. Furthermore, low levels of LARP3 promote hTR maturation, increase telomerase activity, and elongate telomeres. LARP7 and MePCE depletion inhibits the conversion of the 3'-extended short (exS) form into mature hTR and the cytoplasmic accumulation of hTR, resulting in telomere shortening. Taken together our data suggest that LARP3 and LARP7/MePCE mediate the processing of hTR precursors and regulate the production of functional telomerase.
Collapse
Affiliation(s)
- Tsai-Ling Kao
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Huang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Peter Baumann
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Chi-Kang Tseng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Qin J, Garus A, Autexier C. The C-terminal extension of dyskerin is a dyskeratosis congenita mutational hotspot that modulates interaction with telomerase RNA and subcellular localization. Hum Mol Genet 2024; 33:318-332. [PMID: 37879098 PMCID: PMC10840380 DOI: 10.1093/hmg/ddad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Dyskerin is a component of the human telomerase complex and is involved in stabilizing the human telomerase RNA (hTR). Many mutations in the DKC1 gene encoding dyskerin are found in X-linked dyskeratosis congenita (X-DC), a premature aging disorder and other related diseases. The C-terminal extension (CTE) of dyskerin contributes to its interaction with the molecular chaperone SHQ1 during the early stage of telomerase biogenesis. Disease mutations in this region were proposed to disrupt dyskerin-SHQ1 interaction and destabilize dyskerin, reducing hTR levels indirectly. However, biochemical evidence supporting this hypothesis is still lacking. In addition, the effects of many CTE disease mutations on hTR have not been examined. In this study, we tested eight dyskerin CTE variants and showed that they failed to maintain hTR levels. These mutants showed slightly reduced but not abolished interaction with SHQ1, and caused defective binding to hTR. Deletion of the CTE further reduced binding to hTR, and perturbed localization of dyskerin to the Cajal bodies and the nucleolus, and the interaction with TCAB1 as well as GAR1. Our findings suggest impaired dyskerin-hTR interaction in cells as a previously overlooked mechanism through which dyskerin CTE mutations cause X-DC and related telomere syndromes.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, Quebec, QC H3A 0C7, Canada
- Lady Davis Institute, Jewish General Hospital, 3755 Chem, de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
8
|
Dunn PL, Logeswaran D, Chen JJL. Telomerase-Mediated Anti-Ageing Interventions. Subcell Biochem 2024; 107:1-20. [PMID: 39693017 DOI: 10.1007/978-3-031-66768-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The ageing process involves a gradual decline of chromosome integrity throughout an organism's lifespan. Telomeres are protective DNA-protein complexes that cap the ends of linear chromosomes in eukaryotic organisms. Telomeric DNA consists of long stretches of short "TTAGGG" repeats that are conserved across most eukaryotes including humans. Telomeres shorten progressively with each round of DNA replication due to the inability of conventional DNA polymerase to completely replicate the chromosome ends, known as the "end-replication problem". The telomerase enzyme counteracts the telomeric DNA loss by de novo addition of telomeric repeats onto chromosomal ends. Germline and stem cells maintain significant levels of telomerase activity to maintain telomere length and can divide almost indefinitely. However, the differentiation of stem cells accompanies the inactivation of telomerase gene expression, resulting in the progressive shortening of telomeres in somatic cells over successive divisions. Critically short telomeres elicit and sustain a persistent DNA damage response leading to permanent growth arrest of cells known as cellular senescence, a hallmark of cellular ageing. The accumulation of senescent cells in tissues and organs contributes to organismal ageing. Thus, the prevention of telomere shortening is a promising means to delay or even reverse cellular ageing. In this chapter, we summarize potential anti-ageing interventions that mitigate telomere shortening through increasing telomerase level or activity and discuss these strategies' risks, benefits, and future outlooks.
Collapse
Affiliation(s)
- Phoebe L Dunn
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Julian J-L Chen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
9
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
10
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Batista LFZ, Dokal I, Parker R. Telomere biology disorders: time for moving towards the clinic? Trends Mol Med 2022; 28:882-891. [PMID: 36057525 PMCID: PMC9509473 DOI: 10.1016/j.molmed.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Telomere biology disorders (TBDs) are a group of rare diseases caused by mutations that impair telomere maintenance. Mutations that cause reduced levels of TERC/hTR, the telomerase RNA component, are found in most TBD patients and include loss-of-function mutations in hTR itself, in hTR-binding proteins [NOP10, NHP2, NAF1, ZCCHC8, and dyskerin (DKC1)], and in proteins required for hTR processing (PARN). These patients show diverse clinical presentations that most commonly include bone marrow failure (BMF)/aplastic anemia (AA), pulmonary fibrosis, and liver cirrhosis. There are no curative therapies for TBD patients. An understanding of hTR biogenesis, maturation, and degradation has identified pathways and pharmacological agents targeting the poly(A) polymerase PAPD5, which adds 3'-oligoadenosine tails to hTR to promote hTR degradation, and TGS1, which modifies the 5'-cap structure of hTR to enhance degradation, as possible therapeutic approaches. Critical next steps will be clinical trials to establish the effectiveness and potential side effects of these compounds in TBD patients.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Center for Genome Integrity, Washington University in St. Louis, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Roy Parker
- Department of Biochemistry and Biofrontiers Instiute, University of Colorado, Boulder, CO, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
12
|
Rubtsova M, Dontsova O. How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript. Biomedicines 2022; 10:biomedicines10071650. [PMID: 35884955 PMCID: PMC9313293 DOI: 10.3390/biomedicines10071650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Telomerase RNA has been uncovered as a component of the telomerase enzyme, which acts as a reverse transcriptase and maintains the length of telomeres in proliferated eukaryotic cells. Telomerase RNA is considered to have major functions as a template for telomeric repeat synthesis and as a structural scaffold for telomerase. However, investigations of its biogenesis and turnover, as well as structural data, have provided evidence of functions of telomerase RNA that are not associated with telomerase activity. The primary transcript produced from the human telomerase RNA gene encodes for the hTERP protein, which presents regulatory functions related to autophagy, cellular proliferation, and metabolism. This review focuses on the specific features relating to the biogenesis and structure of human telomerase RNA that support the existence of an isoform suitable for functioning as an mRNA. We believe that further investigation into human telomerase RNA biogenesis mechanisms will provide more levels for manipulating cellular homeostasis, survival, and transformation mechanisms, and may contribute to a deeper understanding of the mechanisms of aging.
Collapse
Affiliation(s)
- Maria Rubtsova
- Department of Chemistry, A.N. Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| | - Olga Dontsova
- Department of Chemistry, A.N. Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia
| |
Collapse
|
13
|
Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. RNA (NEW YORK, N.Y.) 2021; 27:1441-1458. [PMID: 34556550 PMCID: PMC8594475 DOI: 10.1261/rna.078953.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dyskerin and its homologs are ancient and conserved enzymes that catalyze the most common post-transcriptional modification found in cells, pseudouridylation. The resulting pseudouridines provide stability to RNA molecules and regulate ribosome biogenesis and splicing events. Dyskerin does not act independently-it is the core component of a protein heterotetramer, which associates with RNAs that contain the H/ACA motif. The variety of H/ACA RNAs that guide the function of this ribonucleoprotein (RNP) complex highlights the diversity of cellular processes in which dyskerin participates. When associated with small nucleolar (sno) RNAs, it regulates ribosomal (r) RNAs and ribosome biogenesis. By interacting with small Cajal body (sca) RNAs, it targets small nuclear (sn) RNAs to regulate pre-mRNA splicing. As a component of the telomerase holoenzyme, dyskerin binds to the telomerase RNA to modulate telomere maintenance. In a disease context, dyskerin malfunction can result in multiple detrimental phenotypes. Mutations in DKC1, the gene that encodes dyskerin, cause the premature aging syndrome X-linked dyskeratosis congenita (X-DC), a still incurable disorder that typically leads to bone marrow failure. In this review, we present the classical and most recent findings on this essential protein, discussing the evolutionary, structural, and functional aspects of dyskerin and the H/ACA RNP. The latest research underscores the role that dyskerin plays in the regulation of gene expression, translation efficiency, and telomere maintenance, along with the impacts that defective dyskerin has on aging, cell proliferation, haematopoietic potential, and cancer.
Collapse
Affiliation(s)
- Alexandre Garus
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, H3T 1E2, Canada
| |
Collapse
|
14
|
Analysis of Telomere Maintenance Related Genes Reveals NOP10 as a New Metastatic-Risk Marker in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13194758. [PMID: 34638246 PMCID: PMC8507560 DOI: 10.3390/cancers13194758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Telomere maintenance involving TERT and ATRX genes has been recently described in metastatic pheochromocytoma and paraganglioma, reinforcing the importance of immortalization mechanisms in the progression of these tumors. Thus, the aim of this study was to analyze additional telomere-related genes to uncover potential new markers capable of identifying metastatic-risk patients more accurately. After analyzing 29 telomere-related genes, we were able to validate the predictive value of TERT and ATRX in mPPGL progression. In addition, we were able to identify NOP10 as a novel prognostic risk marker of mPPGLs, which also facilitates telomerase-dependent telomere length maintenance in these tumors. Interestingly, NOP10 overexpression assessment by IHC could be easily included within the current battery of markers for stratifying PPGL patients to fine-tune their clinical diagnoses. Abstract One of the main problems we face with PPGL is the lack of molecular markers capable of predicting the development of metastases in patients. Telomere-related genes, such as TERT and ATRX, have been recently described in PPGL, supporting the association between the activation of immortalization mechanisms and disease progression. However, the contribution of other genes involving telomere preservation machinery has not been previously investigated. In this work, we aimed to analyze the prognostic value of a comprehensive set of genes involved in telomere maintenance. For this study, we collected 165 PPGL samples (97 non-metastatic/63 metastatic), genetically characterized, in which the expression of 29 genes of interest was studied by NGS. Three of the 29 genes studied, TERT, ATRX and NOP10, showed differential expression between metastatic and non-metastatic cases, and alterations in these genes were associated with a shorter time to progression, independent of SDHB-status. We studied telomere length by Q-FISH in patient samples and in an in vitro model. NOP10 overexpressing tumors displayed an intermediate-length telomere phenotype without ALT, and in vitro results suggest that NOP10 has a role in telomerase-dependent telomere maintenance. We also propose the implementation of NOP10 IHC to better stratify PPGL patients.
Collapse
|