1
|
Diensthuber G, Novoa EM. Charting the epitranscriptomic landscape across RNA biotypes using native RNA nanopore sequencing. Mol Cell 2025; 85:276-289. [PMID: 39824168 DOI: 10.1016/j.molcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
RNA modifications are conserved chemical features found in all domains of life and across diverse RNA biotypes, shaping gene expression profiles and enabling rapid responses to environmental changes. Their broad chemical diversity and dynamic nature pose significant challenges for studying them comprehensively. These limitations can now be addressed through direct RNA nanopore sequencing (DRS), which allows simultaneous identification of diverse RNA modification types at single-molecule and single-nucleotide resolution. Here, we review recent efforts pioneering the use of DRS to better understand the epitranscriptomic landscape. We highlight how DRS can be applied to investigate different RNA biotypes, emphasizing the use of specialized library preparation protocols and downstream bioinformatic workflows to detect both natural and synthetic RNA modifications. Finally, we provide a perspective on the future role of DRS in epitranscriptomic research, highlighting remaining challenges and emerging opportunities from improved sequencing yields and accuracy enabled by the latest DRS chemistry.
Collapse
Affiliation(s)
- Gregor Diensthuber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
2
|
Vujaklija I, Biđin S, Volarić M, Bakić S, Li Z, Foo R, Liu J, Šikić M. Detecting a wide range of epitranscriptomic modifications using a nanopore-sequencing-based computational approach with 1D score-clustering. Nucleic Acids Res 2025; 53:gkae1168. [PMID: 39658045 PMCID: PMC11724293 DOI: 10.1093/nar/gkae1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
To date, over 40 epigenetic and 300 epitranscriptomic modifications have been identified. However, current short-read sequencing-based experimental methods can detect <10% of these modifications. Integrating long-read sequencing technologies with advanced computational approaches, including statistical analysis and machine learning, offers a promising new frontier to address this challenge. While supervised machine learning methods have achieved some success, their usefulness is restricted to a limited number of well-characterized modifications. Here, we introduce Modena, an innovative unsupervised learning approach utilizing long-read nanopore sequencing capable of detecting a broad range of modifications. Modena outperformed other methods in five out of six benchmark datasets, in some cases by a wide margin, while being equally competitive with the second best method on one dataset. Uniquely, Modena also demonstrates consistent accuracy on a DNA dataset, distinguishing it from other approaches. A key feature of Modena is its use of 'dynamic thresholding', an approach based on 1D score-clustering. This methodology differs substantially from the traditional statistics-based 'hard-thresholds.' We show that this approach is not limited to Modena but has broader applicability. Specifically, when combined with two existing algorithms, 'dynamic thresholding' significantly enhances their performance, resulting in up to a threefold improvement in F1-scores.
Collapse
Affiliation(s)
- Ivan Vujaklija
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
| | - Siniša Biđin
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
| | - Marin Volarić
- Laboratory of non-coding DNA, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Sara Bakić
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
- School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Zhe Li
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
| | - Roger Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Mile Šikić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 1 Create Way, Singapore 138602, Singapore
| |
Collapse
|
3
|
Wiechert F, Unbehaun A, Sprink T, Seibel H, Bürger J, Loerke J, Mielke T, Diebolder C, Schacherl M, Spahn CT. Visualizing the modification landscape of the human 60S ribosomal subunit at close to atomic resolution. Nucleic Acids Res 2025; 53:gkae1191. [PMID: 39658079 PMCID: PMC11724314 DOI: 10.1093/nar/gkae1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical modifications of ribosomal RNAs (rRNAs) and proteins expand their topological repertoire, and together with the plethora of bound ligands, fine-tune ribosomal function. Detailed knowledge of this natural composition provides important insights into ribosome genesis and function and clarifies some aspects of ribosomopathies. The discovery of new structural properties and functional aspects of ribosomes has gone hand in hand with cryo-electron microscopy (cryo-EM) and its technological development. In line with the ability to visualize atomic details - a prerequisite for identifying chemical modifications and ligands in cryo-EM maps - in this work we present the structure of the 60S ribosomal subunit from HeLa cells at the very high global resolution of 1.78 Å. We identified 113 rRNA modifications and four protein modifications including uL2-Hisβ-ox216, which stabilizes the local structure near the peptidyl transferase centre via an extended hydrogen-bonding network. We can differentiate metal ions Mg2+ and K+, polyamines spermine, spermidine and putrescine and identify thousands of water molecules binding to the 60S subunit. Approaching atomic resolution cryo-EM has become a powerful tool to examine fine details of macromolecular structures that will expand our knowledge about translation and other biological processes in the future and assess the variability of the chemical space due to differences between species/tissues or varying physicochemical environment.
Collapse
MESH Headings
- Humans
- Cryoelectron Microscopy
- HeLa Cells
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Models, Molecular
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
Collapse
Affiliation(s)
- Franziska Wiechert
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Anett Unbehaun
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thiemo Sprink
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Helena Seibel
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jörg Bürger
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Justus Loerke
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Christoph A Diebolder
- Core Facility for Cryo-Electron Microscopy (CFcryoEM), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Cryo-EM, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Magdalena Schacherl
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian M T Spahn
- Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
4
|
Milenkovic I, Cruciani S, Llovera L, Lucas MC, Medina R, Pauli C, Heid D, Muley T, Schneider MA, Klotz LV, Allgäuer M, Lattuca R, Lafontaine DLJ, Müller-Tidow C, Novoa EM. Epitranscriptomic rRNA fingerprinting reveals tissue-of-origin and tumor-specific signatures. Mol Cell 2025; 85:177-190.e7. [PMID: 39662470 DOI: 10.1016/j.molcel.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Mammalian ribosomal RNA (rRNA) molecules are highly abundant RNAs, decorated with over 220 rRNA modifications. Previous works have shown that some rRNA modification types can be dynamically regulated; however, how and when the mammalian rRNA modification landscape is remodeled remains largely unexplored. Here, we employ direct RNA sequencing to chart the human and mouse rRNA epitranscriptome across tissues, developmental stages, cell types, and disease. Our analyses reveal multiple rRNA sites that are differentially modified in a tissue- and/or developmental stage-specific manner, including previously unannotated modified sites. We demonstrate that rRNA modification patterns can be used for tissue and cell-type identification, which we hereby term "epitranscriptomic fingerprinting." We then explore rRNA modification patterns in normal-tumor matched samples from lung cancer patients, finding that epitranscriptomic fingerprinting accurately classifies clinical samples into normal and tumor groups from only 250 reads per sample, demonstrating the potential of rRNA modifications as diagnostic biomarkers.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Sonia Cruciani
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Laia Llovera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Morghan C Lucas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Rebeca Medina
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Cornelius Pauli
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany; Division of Mechanisms Regulation Gene Expression, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Daniel Heid
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany; Division of Mechanisms Regulation Gene Expression, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Thomas Muley
- Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Heidelberg 69120, Germany; Translational Research Unit and Lung Biobank Heidelberg, Thoraxklinik at Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Marc A Schneider
- Translational Lung Research Center (TLRC-H), German Center for Lung Research (DZL), Heidelberg 69120, Germany; Translational Research Unit and Lung Biobank Heidelberg, Thoraxklinik at Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Laura V Klotz
- Department of Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Ruben Lattuca
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, 6041 Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, 6041 Gosselies, Belgium
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg 69120, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL), Heidelberg 69117, Germany
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
5
|
Saville L, Wu L, Habtewold J, Cheng Y, Gollen B, Mitchell L, Stuart-Edwards M, Haight T, Mohajerani M, Zovoilis A. NERD-seq: a novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs. Genome Biol 2024; 25:233. [PMID: 39198865 PMCID: PMC11351768 DOI: 10.1186/s13059-024-03375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are frequently documented RNA modification substrates. Nanopore Technologies enables the direct sequencing of RNAs and the detection of modified nucleobases. Ordinarily, direct RNA sequencing uses polyadenylation selection, studying primarily mRNA gene expression. Here, we present NERD-seq, which enables detection of multiple non-coding RNAs, excluded by the standard approach, alongside natively polyadenylated transcripts. Using neural tissues as a proof of principle, we show that NERD-seq expands representation of frequently modified non-coding RNAs, such as snoRNAs, snRNAs, scRNAs, srpRNAs, tRNAs, and rRFs. NERD-seq represents an RNA-seq approach to simultaneously study mRNA and ncRNA epitranscriptomes in brain tissues and beyond.
Collapse
Affiliation(s)
- Luke Saville
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Li Wu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Jemaneh Habtewold
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
| | - Yubo Cheng
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Babita Gollen
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Liam Mitchell
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Matthew Stuart-Edwards
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Travis Haight
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Majid Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada
| | - Athanasios Zovoilis
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, R3E3N4, Canada.
- Paul Albrechtsen Research Institute, CCMB, Winnipeg, MB, R3E3N4, Canada.
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, T1K3M4, Canada.
| |
Collapse
|
6
|
Chan A, Naarmann-de Vries IS, Scheitl CPM, Höbartner C, Dieterich C. Detecting m 6A at single-molecular resolution via direct RNA sequencing and realistic training data. Nat Commun 2024; 15:3323. [PMID: 38637518 PMCID: PMC11026524 DOI: 10.1038/s41467-024-47661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Direct RNA sequencing offers the possibility to simultaneously identify canonical bases and epi-transcriptomic modifications in each single RNA molecule. Thus far, the development of computational methods has been hampered by the lack of biologically realistic training data that carries modification labels at molecular resolution. Here, we report on the synthesis of such samples and the development of a bespoke algorithm, mAFiA (m6A Finding Algorithm), that accurately detects single m6A nucleotides in both synthetic RNAs and natural mRNA on single read level. Our approach uncovers distinct modification patterns in single molecules that would appear identical at the ensemble level. Compared to existing methods, mAFiA also demonstrates improved accuracy in measuring site-level m6A stoichiometry in biological samples.
Collapse
Affiliation(s)
- Adrian Chan
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany.
- German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
7
|
Sun Y, Piechotta M, Naarmann-de Vries I, Dieterich C, Ehrenhofer-Murray A. Detection of queuosine and queuosine precursors in tRNAs by direct RNA sequencing. Nucleic Acids Res 2023; 51:11197-11212. [PMID: 37811872 PMCID: PMC10639084 DOI: 10.1093/nar/gkad826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Queuosine (Q) is a complex tRNA modification found in bacteria and eukaryotes at position 34 of four tRNAs with a GUN anticodon, and it regulates the translational efficiency and fidelity of the respective codons that differ at the Wobble position. In bacteria, the biosynthesis of Q involves two precursors, preQ0 and preQ1, whereas eukaryotes directly obtain Q from bacterial sources. The study of queuosine has been challenging due to the limited availability of high-throughput methods for its detection and analysis. Here, we have employed direct RNA sequencing using nanopore technology to detect the modification of tRNAs with Q and Q precursors. These modifications were detected with high accuracy on synthetic tRNAs as well as on tRNAs extracted from Schizosaccharomyces pombe and Escherichia coli by comparing unmodified to modified tRNAs using the tool JACUSA2. Furthermore, we present an improved protocol for the alignment of raw sequence reads that gives high specificity and recall for tRNAs ex cellulo that, by nature, carry multiple modifications. Altogether, our results show that 7-deazaguanine-derivatives such as queuosine are readily detectable using direct RNA sequencing. This advancement opens up new possibilities for investigating these modifications in native tRNAs, furthering our understanding of their biological function.
Collapse
Affiliation(s)
- Yu Sun
- Institut für Biologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Michael Piechotta
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Isabel Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital, Heidelberg, Germany; German Centre for Cardiovascular Research (DZHK)-Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ann E Ehrenhofer-Murray
- Institut für Biologie, Lebenswissenschaftliche Fakultät, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|