1
|
Schmidt JR, Haupt J, Riemschneider S, Kämpf C, Löffler D, Blumert C, Reiche K, Koehl U, Kalkhof S, Lehmann J. Transcriptomic signatures reveal a shift towards an anti-inflammatory gene expression profile but also the induction of type I and type II interferon signaling networks through aryl hydrocarbon receptor activation in murine macrophages. Front Immunol 2023; 14:1156493. [PMID: 37287978 PMCID: PMC10242070 DOI: 10.3389/fimmu.2023.1156493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates a broad range of target genes involved in the xenobiotic response, cell cycle control and circadian rhythm. AhR is constitutively expressed in macrophages (Mϕ), acting as key regulator of cytokine production. While proinflammatory cytokines, i.e., IL-1β, IL-6, IL-12, are suppressed through AhR activation, anti-inflammatory IL-10 is induced. However, the underlying mechanisms of those effects and the importance of the specific ligand structure are not yet completely understood. Methods Therefore, we have compared the global gene expression pattern in activated murine bone marrow-derived macrophages (BMMs) subsequently to exposure with either benzo[a]pyrene (BaP) or indole-3-carbinol (I3C), representing high-affinity vs. low-affinity AhR ligands, respectively, by means of mRNA sequencing. AhR dependency of observed effects was proved using BMMs from AhR-knockout (Ahr-/-) mice. Results and discussion In total, more than 1,000 differentially expressed genes (DEGs) could be mapped, covering a plethora of AhR-modulated effects on basal cellular processes, i.e., transcription and translation, but also immune functions, i.e., antigen presentation, cytokine production, and phagocytosis. Among DEGs were genes that are already known to be regulated by AhR, i.e., Irf1, Ido2, and Cd84. However, we identified DEGs not yet described to be AhR-regulated in Mϕ so far, i.e., Slpi, Il12rb1, and Il21r. All six genes likely contribute to shifting the Mϕ phenotype from proinflammatory to anti-inflammatory. The majority of DEGs induced through BaP were not affected through I3C exposure, probably due to higher AhR affinity of BaP in comparison to I3C. Mapping of known aryl hydrocarbon response element (AHRE) sequence motifs in identified DEGs revealed more than 200 genes not possessing any AHRE, and therefore being not eligible for canonical regulation. Bioinformatic approaches modeled a central role of type I and type II interferons in the regulation of those genes. Additionally, RT-qPCR and ELISA confirmed a AhR-dependent expressional induction and AhR-dependent secretion of IFN-γ in response to BaP exposure, suggesting an auto- or paracrine activation pathway of Mϕ.
Collapse
Affiliation(s)
- Johannes R. Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Janine Haupt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| | - Sina Riemschneider
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Christoph Kämpf
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Dennis Löffler
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Conny Blumert
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ulrike Koehl
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Institute for Clinical Immunology, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
- Department of Applied Sciences, Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Jörg Lehmann
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Leipzig, Germany
| |
Collapse
|
2
|
Liang L, Jin X, Li J, Li R, Jiao X, Ma Y, Li Z, Liu R. A comprehensive review of pharmacokinetic and pharmacodynamic in animals: exploration of interaction with antibiotics of Shuang-Huang-Lian preparations. Curr Top Med Chem 2021; 22:83-94. [PMID: 34636312 DOI: 10.2174/1568026621666211012111442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 12/15/2022]
Abstract
As a traditional Chinese medicine, Shuang-Huang-Lian (SHL) has been widely used for treating infectious diseases of the respiratory tract such as encephalitis, pneumonia and asthma. During the past few decades, considerable research has focused on the pharmacological action, pharmacokinetic interaction with antibiotics and clinical applications of SHL. A huge and more recent body of pharmacokinetic study supports the combination of SHL and antibiotics has different effects such as antagonism and synergism. SHL has been one of the best-selling traditional Chinese medicine (TCM) products. However, there is no system review of SHL preparations, ranging from protection against respiratory tract infections to interaction with antibiotics. Since their important significance in clinical therapy, the pharmacodynamic, pharmacokinetic, and interactions with antibiotics of SHL were reviewed and discussed. In addition, this review attempts to explore the possible potential mechanism of SHL preparations in prevention and treatment of COVID-19. We are concerned about what is known of the effects of SHL against virus, bacterium, and its interactions with antibiotics, providing a new strategy for expanding the clinical research and medication of SHL preparations.
Collapse
Affiliation(s)
- Liuyi Liang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309. China
| | - Jinjing Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Rong Li
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, 1 Huizhihuan Road, Dongli District, Tianjin 300309. China
| | - Xinyi Jiao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Yuanyuan Ma
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| | - Rui Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyang Lake Road, West Zone of Tuanbo New City, Jinghai District, Tianjin 301617. China
| |
Collapse
|
3
|
Yanagisawa R, Koike E, Takano H. Benzo[a]pyrene aggravates atopic dermatitis-like skin lesions in mice. Hum Exp Toxicol 2021; 40:S269-S277. [PMID: 34424081 DOI: 10.1177/09603271211036123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Benzo[a]pyrene (BaP) affects the immune system and causes mutagenic and carcinogenic effects. Purpose: We aimed to evaluate the effects of systemic exposure to BaP on mite allergen-induced atopic dermatitis (AD)-like skin lesions in mice. Methods: Mite allergen (Dermatophagoides pteronyssinus; Dp) was injected intradermally into the right ears of NC/Nga male mice on eight occasions every 2-3 days. Benzo[a]pyrene was administered intraperitoneally in the equivalent doses of 0, 2, 20, 200, or 2000 μg/kg/day, once a week on four occasions. Results: AD-like skin inflammation related to mite allergen worsened by BaP exposure at 2, 20 µg/kg/day doses; this was in parallel with eosinophil and mast cell infiltration and mast cell degranulation. A trend was also observed toward increased proinflammatory molecule expression, including macrophage inflammatory protein-1 alpha, interleukin (IL)-4, IL-13, and IL-18, in the ear tissue. However, 200 or 2000 µg/kg/day BaP attenuated the enhancing effects. In the regional lymph nodes, 2 µg/kg/day BaP with Dp enhanced antigen-presenting cell and T cell activation compared with Dp alone. Conclusions: This suggests that BaP exposure can aggravate Dp-induced AD-like skin lesions through TH2-biased responses in the inflamed sites and the activation of regional lymph nodes. Therefore, BaP may be responsible for the recent increase in AD incidence.
Collapse
Affiliation(s)
- Rie Yanagisawa
- Health and Environmental Risk Division, 13585National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Health and Environmental Risk Division, 13585National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, 12918Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Abstract
Since the industrial revolution, air pollution has become a major problem causing several health problems involving the airways as well as the cardiovascular, reproductive, or neurological system. According to the WHO, about 3.6 million deaths every year are related to inhalation of polluted air, specifically due to pulmonary diseases. Polluted air first encounters the airways, which are a major human defense mechanism to reduce the risk of this aggressor. Air pollution consists of a mixture of potentially harmful compounds such as particulate matter, ozone, carbon monoxide, volatile organic compounds, and heavy metals, each having its own effects on the human body. In the last decades, a lot of research investigating the underlying risks and effects of air pollution and/or its specific compounds on the airways, has been performed, involving both in vivo and in vitro experiments. The goal of this review is to give an overview of the recent data on the effects of air pollution on healthy and diseased airways or models of airway disease, such as asthma or chronic obstructive pulmonary disease. Therefore, we focused on studies involving pollution and airway symptoms and/or damage both in mice and humans.
Collapse
|
5
|
Cui Z, Feng Y, Li D, Li T, Gao P, Xu T. Activation of aryl hydrocarbon receptor (AhR) in mesenchymal stem cells modulates macrophage polarization in asthma. J Immunotoxicol 2021; 17:21-30. [PMID: 31922435 DOI: 10.1080/1547691x.2019.1706671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Macrophage polarization has been demonstrated to exert a vital role on asthma pathogenesis. Mesenchymal stem cells (MSC) have the capacity to modulate macrophage differentiation from a pro-inflammatory M1 phenotype toward an anti-inflammatory M2 phenotype. However, the impact of MSC-macrophage interactions on asthma development and underlying mechanisms responsible for this interaction remain largely unknown. The aim of this study was to investigate the role of AhR expressed on MSC in macrophage polarization in a cockroach extract (CRE)-induced asthma mouse model. The studies here revealed that MSC polarized macrophages from a pro-inflammatory M1 phenotype toward an anti-inflammatory M2 phenotype in this model. The mRNA levels of interleukin (IL)-6, IL-1β, and NOS2 as M1 markers were significantly decreased while those of select M2 markers such as Arg-1, FIZZ1, and YM-1 were significantly enhanced. It was also observed that aryl hydrocarbon receptor (AhR) signaling was significantly increased during asthma pathogenesis as demonstrated by enhanced mRNA expression of AhR, CYP1a1, and CYP1b1. It was also seen that the elevated AhR signaling was able to attenuate the onset of asthma. Use of an AhR antagonist (CH223191) resulted in significant inhibition of the AhR signaling and increases in M2 marker expression, but led to elevation of expression of M1 markers in the CRE-induced asthma model. Taken together, the current study showed that MSC can modulate macrophage polarization, in part, via activation of AhR signaling during CRE-induced asthma.
Collapse
Affiliation(s)
- Zhuang Cui
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Feng
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danqing Li
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taoping Li
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ting Xu
- Department of Sleep Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Asthma and air pollution: recent insights in pathogenesis and clinical implications. Curr Opin Pulm Med 2021; 26:10-19. [PMID: 31724961 DOI: 10.1097/mcp.0000000000000644] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Air pollution has adverse effects on the onset and morbidity of respiratory diseases, including asthma. In this review, we discuss recent insights into the effects of air pollution on the incidence and exacerbation of asthma. We focus on epidemiological studies that describe the association between air pollution exposure and development, mortality, persistence and exacerbations of asthma among different age groups. Moreover, we also provide an update on translational studies describing the mechanisms behind this association. RECENT FINDINGS Mechanisms linking air pollutants such as particulate matter, nitrogen dioxide (NO2) and ozone to the development and exacerbation of asthma include the induction of both eosinophilic and neutrophilic inflammation driven by stimulation of airway epithelium and increase of pro-inflammatory cytokine production, oxidative stress and DNA methylation changes. Although exposure during foetal development is often reported as a crucial timeframe, exposure to air pollution is detrimental in people of all ages, thus influencing asthma onset as well as increase in asthma prevalence, mortality, persistence and exacerbation. SUMMARY In conclusion, this review highlights the importance of reducing air pollution levels to avert the progressive increase in asthma incidence and morbidity.
Collapse
|
7
|
Win-Shwe TT, Yanagisawa R, Koike E, Takano H. Dietary exposure to bisphenol A affects memory function and neuroimmune biomarkers in allergic asthmatic mice. J Appl Toxicol 2021; 41:1527-1536. [PMID: 33474794 DOI: 10.1002/jat.4143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 01/24/2023]
Abstract
Bisphenol A (BPA) is a raw material of polycarbonate and epoxy resin. It is used for various household electrical appliances, electronic equipment, office automation equipment, medical equipment, mobile phones, paints for automobiles, internal surface coating of cans, and adhesives for civil engineering and construction. BPA is a well-known endocrine-disrupting chemical, and it was reported that BPA has an adverse effect on the nervous and immune systems. However, BPA-induced memory impairment and changes in neuroimmune biomarkers in the allergic asthmatic subject are not known yet. We aim to investigate the dietary exposure effect of BPA on brain function and biomarkers using allergic an asthmatic mouse model. Five-week-old male C3H/HeJSlc mice were fed two doses of BPA [0.901, 9.01 μg/kg/day] contained chow diet from 5 to 11 weeks old and ovalbumin (OVA) was given by intratracheal instillation every 2 weeks. Memory function was determined by a novel object recognition test. Genes related to memory and immune markers in the hippocampus were investigated with the real-time polymerase chain reaction (RT-PCR) method. In this study, impaired novel object recognition occurred in BPA-exposed mice in the presence of an allergen. Moreover, upregulation of expression level of neuroimmune biomarkers such as N-methyl-D-aspartate receptor, tumor necrosis factor-α, ionized calcium-binding adapter molecule-1, cyclooxygenase-2, and heme oxygenase-1 in the hippocampus was observed in BPA-exposed allergic asthmatic mice. These findings show that BPA exposure can induce neuroinflammation and which triggers impairment of memory function in mice with allergic asthma. Our study indicated that dietary exposure to BPA may affect higher brain functions by modulating neuroimmune biomarkers in allergic asthmatic subjects.
Collapse
Affiliation(s)
- Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Rie Yanagisawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Eiko Koike
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Feng Y, Zhou A, Zhang Y, Liu S, Pan Z, Zou J, Xie S. Transcriptomic changes in western mosquitofish (Gambusia affinis) liver following benzo[a]pyrene exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21924-21938. [PMID: 32285385 DOI: 10.1007/s11356-020-08571-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Widely distributed western mosquitofish (Gambusia affinis) has been used as a new model species for hazard assessment of environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH studies using G. affinis rely on targeted biomarker-based analysis, and thus may not adequately address the complexity of the toxic mechanisms of the stressors. In the present study, the whole transcriptional sequencing of G. affinis liver after exposure to a PAH model, benzo[a]pyrene (BaP) (100 μg/L), for 20 days was performed by using the HiSeq XTen sequencers. In total, 58,156,233 and 51,825,467 clean nucleotide reads were obtained in the control and BaP-exposed libraries, respectively, with average N50 lengths of 1419 bp. In addition, after G. affinis was exposed for 20 days, 169 genes were upregulated, and 176 genes were downregulated in liver. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied to all the genes to determine the genes' biological functions and processes. The results clearly showed that the differentially expressed genes were mainly related to immune pathways and metabolic correlation pathways. Interestingly, almost all the pathways related with the immunity were upregulated, while the metabolism pathways were downregulated. Lastly, quantitative real-time PCR (qRT-PCR) was performed to measure expressional levels of twelve genes confirmed through the DGE analysis. These results demonstrate that BaP damages immunity and enhances the consumption of all available energy storage to activate mechanisms of the detoxification in G. affinis. Up until now, the present study is the first time that a whole transcriptome sequencing analysis in the liver of G. affinis exposed to BaP has been reported.
Collapse
Affiliation(s)
- Yongyong Feng
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Aiguo Zhou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Departments of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shulin Liu
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Zhengkun Pan
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jixing Zou
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Shaolin Xie
- College of Marine Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People's Republic of China.
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|