1
|
Rivadeneira EO, Allen R, Adam M, Seifert AW. Specific cell states underlie complex tissue regeneration in spiny mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637521. [PMID: 39990382 PMCID: PMC11844359 DOI: 10.1101/2025.02.10.637521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cell proliferation is an elemental feature of epimorphic regeneration in vertebrate taxa. We previously reported that in contrast to fibrotic repair observed in laboratory mouse ( Mus ) strains, highly regenerative spiny mice ( Acomys spp.) exhibit cell cycle progression and cell proliferation to faithfully replace missing tissue. However, little is known about proliferation dynamics, and specific cell types and states that may contribute to complex tissue regeneration in mammals. Using temporal pulse-chase experiments, we show that stromal cells in Acomys dimidiatus rapidly re-enter the cell cycle in response to injury and maintain tight spatiotemporal control of cell cycle progression to restrict the proliferative population to a distal area relative to the injury. Conversely, Mus stromal cells incorporate thymidine analogs without cell division supporting an S-phase arrest after D10. Deploying immunostaining and scRNA-seq, we identify several key cell types (CRABP1+, αSMA+) differentially associated with regenerating versus scar tissue. Importantly, our single cell data revealed distinct gene expression profiles for cross-species stromal cell types, identifying cell states specific for regenerative or fibrotic healing. While CRABP1+ fibroblasts are enriched in Acomys ears before and after injury, similar fibroblasts enriched in young, postnatal Mus ears remain unable to promote regeneration. Our data underscore the finely regulated dynamics of proliferating cells during regeneration and emphasize that regeneration depends on multiple factors including the presence of specific cell types and the ability of cells to acquire specific states. Key Conclusions Differentiated cells in Acomys , Mus and Danio re-enter the cell cycle in response to injury, while homeostatic cycling cells contribute to blastema formation in Ambystoma Pulse-chase thymidine analog labeling shows tight spatiotemporal control of proliferating stromal cells during regeneration in Acomys . Following injury, CRABP1 and αSMA are expressed in distinct stromal cell populations in Acomys but are co-expressed in Mus stromal cell populations. Species-specific cell states underlie regenerative and fibrotic repair CRABP1+ cells are lost during embryonic development in Mus ear pinna but are retained in Acomys to adulthood. Young neonatal Mus with abundant CRABP1+ cells still fail to execute regenerative healing. SUMMARY STATEMENT Comparing regenerative vs. fibrotic healing, we identify injury-induced cell states associated with persistent cell cycle progression and complex tissue regeneration in mammals.
Collapse
|
2
|
Zhao H, Wu N, Wei G, Zhang H, Ren T, Yi J, Zhang Y, Wang Z, Wang Y, Guo Z, Zhang D. Alternative splicing regulation by tumor suppressing subtransferable candidate 4: a pathway to tumor suppression. Front Immunol 2024; 15:1474527. [PMID: 39697342 PMCID: PMC11652373 DOI: 10.3389/fimmu.2024.1474527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction RNA splicing is a crucial posttranscriptional process that governs gene expression, and defects in alternative splicing contribute to various diseases, including cancer. Tumor suppressing subtransferable candidate 4 (TSSC4) is a known tumor suppressor and has been identified as part of the U5 small nuclear ribonucleoprotein (snRNP), which is involved in tri-snRNP biogenesis. However, the precise role of TSSC4 in regulating alternative splicing and its impact on tumor growth remain unclear. Methods To explore the link between splicing modulation and tumor suppression driven by TSSC4, we conducted transcriptome sequencing (RNA-seq) on TSSC4-knockout and wild-type HeLa cells. Additionally, we analyzed alternative splicing and gene expression in various cancer cell lines, including TSSC4-knockout A549 cells and TSSC4-knockdown PANC-1, MDA-MB-231, and MCF-7 cells. Splicing patterns and gene expression profiles were compared between TSSC4-deficient and control cells. Results Our RNA-seq analysis revealed that TSSC4 deficiency in HeLa cells results in widespread alterations in splicing patterns and gene expression. Specifically, the loss of TSSC4 led to abnormal alternative splicing events and dysregulation of tumor-associated genes, including several oncogenes. This effect was confirmed across multiple cancer cell lines, highlighting a consistent role of TSSC4 in splicing regulation. Discussion These findings demonstrate that TSSC4 plays a crucial role in regulating RNA splicing, particularly in controlling the splicing of many oncogenes. Our results reveal a novel mechanism by which TSSC4 mediates tumor suppression through the modulation of alternative splicing, which could provide implications for understanding TSSC4's role in cancer biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Duanwu Zhang
- Children’s Hospital of Fudan University, National Children’s Medical
Center, and Shanghai Key Laboratory of Medical Epigenetics, International Colaboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Fei Y, Cao D, Li Y, Wang Z, Dong R, Zhu M, Gao P, Wang X, Cai J, Zuo X. Circ_0008315 promotes tumorigenesis and cisplatin resistance and acts as a nanotherapeutic target in gastric cancer. J Nanobiotechnology 2024; 22:519. [PMID: 39210348 PMCID: PMC11360491 DOI: 10.1186/s12951-024-02760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
INTRODUCTION Cisplatin-based chemotherapy is one of the fundamental therapeutic modalities for gastric cancer (GC). Chemoresistance to cisplatin is a great clinical challenge, and its underlying mechanisms remain poorly understood. Circular RNAs (circRNAs) are involved in the pathophysiology of multiple human malignancies. METHODS High-throughput sequencing was performed to determine the differentially expressed profile of circRNA in GC tissues and cisplatin-resistant GC cells. Quantitative real-time polymerase chain reaction and Fluorescence in situ hybridization was utilized to confirm the dysregulation of circ_0008315 in GC tissues. To evaluate the prognostic significance of circ_0008315 in GC, we used Kaplan-Meier plot. The self-renewal ability of drug-resistant GC cell was verified through tumor sphere formation assay. GC organoids were constructed to simulate the tumor microenvironment and verified the function of circ_0008315 in cisplatin resistance of gastric cancer. In vivo evaluation was conducted using patient-derived xenograft models. Dual-luciferase reporter gene, RNA immunoprecipitation and miRNA pull-down assays were employed to investigate the molecular mechanisms of circ_0008315 in GC. RESULTS We revealed that a novel circRNA hsa_circ_0008315 was upregulated in GC and cisplatin-resistant GC cells. Elevated circ_0008315 was also observed in cisplatin-resistant GC organoid model. High circ_0008315 expression predicted unfavorable survival outcome in GC patients. Downregulation of circ_0008315 expression inhibited proliferation, mobility, and epithelial-mesenchymal transition of GC cells in vitro and in vivo. Reducing circ_0008315 expression in cisplatin-resistant GC organoid model reversed cisplatin resistance. Mechanistically, circ_0008315 modulated the stem cell properties of GC through the miR-3666/CPEB4 signaling pathway, thereby promoting cisplatin resistance and GC malignant progression. Furthermore, we developed PLGA-PEG nanoparticles targeting circ_0008315, and the nanoparticles could effectively inhibit GC proliferation and cisplatin resistance. CONCLUSION Circ_0008315 exacerbates GC progression and cisplatin resistance, and can be used as a prognostic predictor. Circ_0008315 may function as a promising nanotherapeutic target for GC treatment.
Collapse
Affiliation(s)
- Yao Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Danping Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Yanna Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Zhixiong Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Runyu Dong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Menglin Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Peng Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Juan Cai
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
- Department of Oncology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
| | - Xueliang Zuo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China.
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
4
|
Gao Z, Zhang Y, Shen W, Liu X, Wei Y, Li L, Cui H. Bruceine A inhibited breast cancer proliferation and metastasis by inducing autophagy via targeting PI3K-AKT signaling pathway. Chem Biol Drug Des 2024; 103:e14398. [PMID: 38010171 DOI: 10.1111/cbdd.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Although there have been significant advances in cancer treatment, the urgent need to inhibit breast cancer metastasis remained unmet. Bruceine A (BA) is a natural compound extracted from Bruceae Fructus and has long been recognized to have antitumor effects with high safety and biocompatibility. However, the mechanisms and/or targets of BA for metastatic breast cancer treatment are still not fully elucidated. In this study, we systematically investigated the effects of BA on inhibition of breast cancer metastasis and its underlying mechanisms. We found that, in addition to its cytotoxic effects, BA significantly inhibited the invasion and migration capabilities of two types of breast cancer cell lines (MDA-MB-231 and MCF-7) while concurrently promoting apoptosis in these cells. Further mechanistic studies revealed that, by targeting the canonical PI3K-AKT signaling pathway, BA initiated autophagy of both types of breast cancer cell lines in vitro. In vivo results further confirmed the in vitro findings, manifested by shrinkage of size and weight of breast tumor as well as initiation of autophagy (indicated by upregulation of LC3I/II) through targeting PI3K-AKT pathway on mice model. These data collectively demonstrated the potential of BA in antimetastasis of breast cancer cells, suggesting its future clinical transformation in metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Zhen Gao
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Liu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfang Wei
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linxia Li
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hengguan Cui
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Wan S, Zhang G, Liu R, Abbas MN, Cui H. Pyroptosis, ferroptosis, and autophagy cross-talk in glioblastoma opens up new avenues for glioblastoma treatment. Cell Commun Signal 2023; 21:115. [PMID: 37208730 DOI: 10.1186/s12964-023-01108-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Glioma is a common primary tumor of the central nervous system (CNS), with glioblastoma multiforme (GBM) being the most malignant, aggressive, and drug resistant. Most drugs are designed to induce cancer cell death, either directly or indirectly, but malignant tumor cells can always evade death and continue to proliferate, resulting in a poor prognosis for patients. This reflects our limited understanding of the complex regulatory network that cancer cells utilize to avoid death. In addition to classical apoptosis, pyroptosis, ferroptosis, and autophagy are recognized as key cell death modalities that play significant roles in tumor progression. Various inducers or inhibitors have been discovered to target the related molecules in these pathways, and some of them have already been translated into clinical treatment. In this review, we summarized recent advances in the molecular mechanisms of inducing or inhibiting pyroptosis, ferroptosis, or autophagy in GBM, which are important for treatment or drug tolerance. We also discussed their links with apoptosis to better understand the mutual regulatory network among different cell death processes. Video Abstract.
Collapse
Affiliation(s)
- Sicheng Wan
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Chongqing, 400715, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400715, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
6
|
Hashemi M, Paskeh MDA, Orouei S, Abbasi P, Khorrami R, Dehghanpour A, Esmaeili N, Ghahremanzade A, Zandieh MA, Peymani M, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Hushmandi K. Towards dual function of autophagy in breast cancer: A potent regulator of tumor progression and therapy response. Biomed Pharmacother 2023; 161:114546. [PMID: 36958191 DOI: 10.1016/j.biopha.2023.114546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
As a devastating disease, breast cancer has been responsible for decrease in life expectancy of females and its morbidity and mortality are high. Breast cancer is the most common tumor in females and its treatment has been based on employment of surgical resection, chemotherapy and radiotherapy. The changes in biological behavior of breast tumor relies on genomic and epigenetic mutations and depletions as well as dysregulation of molecular mechanisms that autophagy is among them. Autophagy function can be oncogenic in increasing tumorigenesis, and when it has pro-death function, it causes reduction in viability of tumor cells. The carcinogenic function of autophagy in breast tumor is an impediment towards effective therapy of patients, as it can cause drug resistance and radio-resistance. The important hallmarks of breast tumor such as glucose metabolism, proliferation, apoptosis and metastasis can be regulated by autophagy. Oncogenic autophagy can inhibit apoptosis, while it promotes stemness of breast tumor. Moreover, autophagy demonstrates interaction with tumor microenvironment components such as macrophages and its level can be regulated by anti-tumor compounds in breast tumor therapy. The reasons of considering autophagy in breast cancer therapy is its pleiotropic function, dual role (pro-survival and pro-death) and crosstalk with important molecular mechanisms such as apoptosis. Moreover, current review provides a pre-clinical and clinical evaluation of autophagy in breast tumor.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pegah Abbasi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
7
|
Wang L, Shi J, Liu S, Huang Y, Ding H, Zhao B, Liu Y, Wang W, Yang J, Chen Z. RAC3 Inhibition Induces Autophagy to Impair Metastasis in Bladder Cancer Cells via the PI3K/AKT/mTOR Pathway. Front Oncol 2022; 12:915240. [PMID: 35847878 PMCID: PMC9279623 DOI: 10.3389/fonc.2022.915240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bladder cancer (BCa) is one of the most frequent malignant tumors globally, with a significant morbidity and mortality rate. Gene expression dysregulation has been proven to play a critical role in tumorigenesis. Ras-related C3 botulinum toxin substrate3 (RAC3), which is overexpressed in several malignancies and promotes tumor progression, has been identified as an oncogene. However, RAC3 has important but not fully understood biological functions in cancer. Our research aims to reveal the new functions and potential mechanisms of RAC3 involved in BCa progression. Methods We explored the expression level of RAC3 and its relationship with prognosis by publicly accessible BCa datasets, while the correlation of RAC3 expression with clinicopathological variables of patients was analyzed. In vitro and in vivo proliferation, migration, autophagy, and other phenotypic changes were examined by constructing knockdown(KD)/overexpression(OE) RAC3 cells and their association with PI3K/AKT/mTOR pathway was explored by adding autophagy-related compounds. Results Compared with non-tumor samples, RAC3 was highly expressed in BCa and negatively correlated with prognosis. KD/OE RAC3 inhibited/promoted the proliferation and migration of BCa cells. Knockdown RAC3 caused cell cycle arrest and decreased adhesion without affecting apoptosis. Inhibition of RAC3 activates PI3K/AKT/mTOR mediated autophagy and inhibits proliferation and migration of BCa cells in vivo and in vitro. Autophagy inhibitor 3MA can partially rescue the metastasis and proliferation inhibition effect caused by RAC3 inhibition. Inhibit/activate mTOR enhanced/impaired autophagy, resulting in shRAC3-mediated migration defect exacerbated/rescued. Conclusion RAC3 is highly expressed in BCa. It is associated with advanced clinicopathological variables and poor prognosis. Knockdown RAC3 exerts an antitumor effect by enhancing PI3K/AKT/mTOR mediated autophagy. Targeting RAC3 and autophagy simultaneously is a potential therapeutic strategy for inhibiting BCa progression and prolonging survival.
Collapse
Affiliation(s)
- Liwei Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Unit 32357 of People’s Liberation Army, Pujiang, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Ding
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Baixiong Zhao
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuting Liu
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wuxing Wang
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiwen Chen
- Urology Institute of People’s Liberation Army, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
8
|
Chen Y, Gibson SB. Tumor Suppressing Subtransferable Candidate 4 Expression Prevents Autophagy-Induced Cell Death Following Temozolomide Treatment in Glioblastoma Cells. Front Cell Dev Biol 2022; 10:823251. [PMID: 35309946 PMCID: PMC8926073 DOI: 10.3389/fcell.2022.823251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive type of brain cancer in adults, with temozolomide (TMZ) being widely used as the standard chemotherapy drug for its treatment. However, GBM frequently becomes resistant to TMZ treatment due to various mechanisms including amplification and mutations of the epidermal growth factor receptor (EGFR), where EGFR variant III (EGFRvIII) is the most common EGFR mutation. Autophagy (macroautophagy) is an intracellular “self-degradation” process involving the lysosome. It mainly plays a pro-cell survival role contributing to drug resistance in cancers including GBM, but, under some conditions, it can induce cell death called autophagy-induced cell death (AuICD). We recently published that TSSC4 (tumor suppressing subtransferable candidate 4) is a novel tumor suppressor and a novel autophagy inhibitor that inhibits cancer cell growth through its interacting with the autophagy protein LC3. In this brief research report, we demonstrate that cell death induced by TMZ in GBM cells is inhibited by overexpression of TSSC4. TSSC4 overexpression also prevents TMZ-induced autophagy but not when TSSC4 is mutated in its conserved LC3-interacting region. When EGFRvIII was expressed in GBM cells, TSSC4 protein was increased and TMZ-induced cell death was decreased. Knockout of TSSC4 in EGFRvIII-expressing GBM cells increased TMZ-induced autophagy and cell death. This cell death was decreased by autophagy inhibition, suggesting that TSSC4 downregulation promotes TMZ-induced AuICD. This indicates that TSSC4 is a novel target to sensitize GBM cells to TMZ treatment.
Collapse
Affiliation(s)
- Yongqiang Chen
- CancerCare Manitoba Research Institute, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Spencer B Gibson
- Department of Biochemistry and Medical Genetics, Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Huang W, Mao L, Xie W, Cai S, Huang Q, Liu Y, Chen Z. Impact of UCP2 depletion on heat stroke-induced mitochondrial function in human umbilical vein endothelial cells. Int J Hyperthermia 2022; 39:287-296. [PMID: 35129048 DOI: 10.1080/02656736.2022.2032846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Wei Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Liangfeng Mao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Weidang Xie
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Sumin Cai
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Qiaobing Huang
- Guangdong Provincial Key Lab of Shock and Microcirculation, Department of Pathophysiology, Southern Medical University, Guangzhou, P.R. China
| | - Yanan Liu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zhongqing Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, P.R. China
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
10
|
Three dimensions of autophagy in regulating tumor growth: cell survival/death, cell proliferation, and tumor dormancy. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166265. [PMID: 34487813 DOI: 10.1016/j.bbadis.2021.166265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is an intracellular lysosomal degradation process involved in multiple facets of cancer biology. Various dimensions of autophagy are associated with tumor growth and cancer progression, and here we focus on the dimensions involved in regulation of cell survival/cell death, cell proliferation and tumor dormancy. The first dimension of autophagy supports cell survival under stress within tumors and under certain contexts drives cell death, impacting tumor growth. The second dimension of autophagy promotes proliferation through directly regulating cell cycle or indirectly maintaining metabolism, increasing tumor growth. The third dimension of autophagy facilitates tumor cell dormancy, contributing to cancer treatment resistance and cancer recurrence. The intricate relationship between these three dimensions of autophagy influences the extent of tumor growth and cancer progression. In this review, we summarize the roles of the three dimensions of autophagy in tumor growth and cancer progression, and discuss unanswered questions in these fields.
Collapse
|
11
|
Wang X, Wei Z, Jiang Y, Meng Z, Lu M. mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virol Sin 2021; 36:1303-1314. [PMID: 34580816 PMCID: PMC8692646 DOI: 10.1007/s12250-021-00450-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that includes mTOR complex (mTORC) 1 and mTORC2. The mTOR pathway is activated in viral hepatitis, including hepatitis B virus (HBV) infection-induced hepatitis. Currently, chronic HBV infection remains one of the most serious public health issues worldwide. The unavailability of effective therapeutic strategies for HBV suggests that clarification of the pathogenesis of HBV infection is urgently required. Increasing evidence has shown that HBV infection can activate the mTOR pathway, indicating that HBV utilizes or hijacks the mTOR pathway to benefit its own replication. Therefore, the mTOR signaling pathway might be a crucial target for controlling HBV infection. Here, we summarize and discuss the latest findings from model biology research regarding the interaction between the mTOR signaling pathway and HBV replication.
Collapse
Affiliation(s)
- Xueyu Wang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.,Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Zhiqiang Wei
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yongfang Jiang
- Department of Infectious Diseases, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhongji Meng
- Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China. .,Department of Infectious Diseases, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|