1
|
Engel SR, Aleksander S, Nash RS, Wong ED, Weng S, Miyasato SR, Sherlock G, Cherry JM. Saccharomyces Genome Database: advances in genome annotation, expanded biochemical pathways, and other key enhancements. Genetics 2025; 229:iyae185. [PMID: 39530598 PMCID: PMC11912841 DOI: 10.1093/genetics/iyae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Budding yeast (Saccharomyces cerevisiae) is the most extensively characterized eukaryotic model organism and has long been used to gain insight into the fundamentals of genetics, cellular biology, and the functions of specific genes and proteins. The Saccharomyces Genome Database (SGD) is a scientific resource that provides information about the genome and biology of S. cerevisiae. For more than 30 years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation for budding yeast along with search and analysis tools to explore these data. Here, we describe recent updates at SGD, including the 2 most recent reference genome annotation updates, expanded biochemical pathway representation, changes to SGD search and data files, and other enhancements to the SGD website and user interface. These activities are part of our continuing effort to promote insights gained from yeast to enable the discovery of functional relationships between sequence and gene products in fungi and higher eukaryotes.
Collapse
Affiliation(s)
- Stacia R Engel
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| | - Suzi Aleksander
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| | - Robert S Nash
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| | - Edith D Wong
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| | - Shuai Weng
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| | - Stuart R Miyasato
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| | - J Michael Cherry
- Department of Genetics, Stanford University, 3165 Porter Dr, Palo Alto, CA 94304, USA
| |
Collapse
|
2
|
Engel SR, Aleksander S, Nash RS, Wong ED, Weng S, Miyasato SR, Sherlock G, Cherry JM. Saccharomyces Genome Database: Advances in Genome Annotation, Expanded Biochemical Pathways, and Other Key Enhancements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613348. [PMID: 39345624 PMCID: PMC11430078 DOI: 10.1101/2024.09.16.613348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Budding yeast (Saccharomyces cerevisiae) is the most extensively characterized eukaryotic model organism and has long been used to gain insight into the fundamentals of genetics, cellular biology, and the functions of specific genes and proteins. The Saccharomyces Genome Database (SGD) is a scientific resource that provides information about the genome and biology of S. cerevisiae. For more than 30 years, SGD has maintained the genetic nomenclature, chromosome maps, and functional annotation for budding yeast along with search and analysis tools to explore these data. Here we describe recent updates at SGD, including the two most recent reference genome annotation updates, expanded biochemical pathways representation, changes to SGD search and data files, and other enhancements to the SGD website and user interface. These activities are part of our continuing effort to promote insights gained from yeast to enable the discovery of functional relationships between sequence and gene products in fungi and higher eukaryotes.
Collapse
Affiliation(s)
- Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Suzi Aleksander
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Robert S Nash
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Edith D Wong
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Shuai Weng
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Stuart R Miyasato
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - J Michael Cherry
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
3
|
Du J, Dong Y, Zhu H, Deng Y, Sa C, Yu Q, Li M. DNA damage-induced autophagy is regulated by inositol polyphosphate synthetases in Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119622. [PMID: 37913846 DOI: 10.1016/j.bbamcr.2023.119622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
DNA damage-induced autophagy is a new type of autophagy that differs from traditional macroautophagy; however, this type of autophagy has not been identified in the pathogenic fungus Candida albicans. Inositol polyphosphates are involved in the regulation of DNA damage repair and macroautophagy; however, whether inositol polyphosphates are involved in the regulation of DNA damage-induced autophagy remains unclear. In this study, we identified DNA damage-induced autophagy in C. albicans and systematically investigated the mechanisms of inositol polyphosphate pathway regulation. We found that the core machinery of macro autophagy is also essential for DNA damage-induced autophagy, and that inositol polyphosphate synthetases Kcs1, Ipk1, and Vip1 play a critical role in autophagy. In this study, we focused on Kcs1 and Vip1, which are responsible for the synthesis of inositol pyrophosphate. The kcs1Δ/Δ and vip1Δ/Δ strains exhibited reduced number of phagophore assembly sites (PAS) and autophagic bodies. The recruitment of autophagy-related gene 1 (Atg1) to PAS was significantly affected in the kcs1Δ/Δ and vip1Δ/Δ strains. Target of rapamycin complex 1 kinase activity was elevated in kcs1Δ/Δ and vip1Δ/Δ strains, which significantly inhibited the initiation of autophagy. Atg18 Localization was altered in these mutants. The absence of Kcs1 or Vip1 caused the downregulation of RAD53, a key gene in the DNA damage response. These data provide further understanding of the mechanism of autophagy regulation in C. albicans.
Collapse
Affiliation(s)
- Jiawen Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yixuan Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ying Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chula Sa
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Kalinin A, Zubkova E, Menshikov M. Integrated Stress Response (ISR) Pathway: Unraveling Its Role in Cellular Senescence. Int J Mol Sci 2023; 24:17423. [PMID: 38139251 PMCID: PMC10743681 DOI: 10.3390/ijms242417423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cellular senescence is a complex process characterized by irreversible cell cycle arrest. Senescent cells accumulate with age, promoting disease development, yet the absence of specific markers hampers the development of selective anti-senescence drugs. The integrated stress response (ISR), an evolutionarily highly conserved signaling network activated in response to stress, globally downregulates protein translation while initiating the translation of specific protein sets including transcription factors. We propose that ISR signaling plays a central role in controlling senescence, given that senescence is considered a form of cellular stress. Exploring the intricate relationship between the ISR pathway and cellular senescence, we emphasize its potential as a regulatory mechanism in senescence and cellular metabolism. The ISR emerges as a master regulator of cellular metabolism during stress, activating autophagy and the mitochondrial unfolded protein response, crucial for maintaining mitochondrial quality and efficiency. Our review comprehensively examines ISR molecular mechanisms, focusing on ATF4-interacting partners, ISR modulators, and their impact on senescence-related conditions. By shedding light on the intricate relationship between ISR and cellular senescence, we aim to inspire future research directions and advance the development of targeted anti-senescence therapies based on ISR modulation.
Collapse
Affiliation(s)
- Alexander Kalinin
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ekaterina Zubkova
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| | - Mikhail Menshikov
- National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (A.K.); (E.Z.)
| |
Collapse
|