1
|
Jin M, Liu S, Zhan M, Huang JD. Engineered Genetic Circuits Activated by Bezafibrate Improve ESC-Based TAA Cancer Vaccine Efficacy and PD-L1 Nanobody Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500272. [PMID: 40245119 DOI: 10.1002/advs.202500272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/01/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy targeting tumor antigens and immune checkpoint inhibitors has garnered significant attention in cancer treatment. Synthetic gene circuits are developed, encoded in plasmids, which regulate the expression of tumor antigens shared with embryonic stem cells (ESCs) and PD-L1 nanobody (PD-L1 nb) in response to bezafibrate stimulation. This approach significantly minimizes side effects and improved therapeutic efficacy. The transcriptional switches leverage the interaction between the bezafibrate-responsive transcriptional activator PPARγ and RXRα, which are fused with the VPR/VP64/p65 activation domains (AD) and the Gal4 DNA-binding domain (DBD), respectively. These synthetic constructs are validated and their ability to modulate gene expression upon bezafibrate treatment are confirmed. Notably, the gene expression is precise and tunable in response to bezafibrate administration. HEK293T cells or ESCs are employed to deliver this gene circuit, or the plasmids containing the circuit into the tumor are directly injected. Administration of bezafibrate reduces tumor growth, increases specific CD8+ T cells, and mitigates CD8+ T cell exhaustion, underscoring the feasibility and effectiveness of the approach. ESC-based and intratumoral delivery of the synthetic gene circuits and cargo genes, particularly PD-L1 nb, significantly inhibit tumor growth. PD-L1 nb effectively blocks PD-L1 expression both in vitro and in vivo, as confirmed by using a mutant PD-L1 nb sequence.
Collapse
Affiliation(s)
- Meiling Jin
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Shuzhen Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Mingshuo Zhan
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Jian-Dong Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, P. R. China
- Department of Clinical Oncology, Shenzhen Key Laboratory for cancer metastasis and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, P. R. China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, 518057, P. R. China
| |
Collapse
|
2
|
Zhang J, Li C, Shuai W, Chen T, Gong Y, Hu H, Wei Y, Kong B, Huang H. maresin2 fine-tunes ULK1 O-GlcNAcylation to improve post myocardial infarction remodeling. Eur J Pharmacol 2024; 962:176223. [PMID: 38056619 DOI: 10.1016/j.ejphar.2023.176223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Myocardial infarction (MI) is one of the common causes of hospitalization and death all over the world. Maresin2 (MaR2), a specialized pro-solving mediator of inflammation, has been consolidated to be a novel cytokine fine-tuning inflammatory cascade. However, the precise mechanism is still unknown. Here, we demonstrated that maresin2 relieved myocardial damage via ULK1 O-GlcNAc modification during MI. METHODS The myocardial infarction model was established by ligating the left anterior descending artery (LAD). Echocardiography, histopathology, transmission electron microscope, and Western blot were used to evaluate cardiac function and remodeling. Furthermore, primary neonatal rat cardiomyocytes (NRCMs) were cultivated, and immunoprecipitation (IP) assays were performed to explore the specific mechanism. RESULTS As suggested, maresin2 treatment protected cardiac function and ameliorated adverse cardiac remodeling. Furthermore, we found that maresin2 facilitated autophagy and inhibited apoptosis under the modulation of O-GlcNAcylation-dependent ULK1 activation. Meanwhile, we discovered that maresin2 treatment ameliorated the inflammation of myocardial cells by inhibiting the interaction of TAK1 and TAB1. CONCLUSIONS Maresin2 is likely to promote autophagy while relieving apoptosis and inflammation of myocardial cells, thereby exerting a protective effect on the heart after MI.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Chenyu Li
- Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China; Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - Yang Gong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China
| | - He Hu
- Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China; Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Yanzhao Wei
- Institute of Cardiovascular Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China; Department of Cardiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, PR China.
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, Hubei, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, Hubei, PR China.
| |
Collapse
|