1
|
Behymer MM, Mo H, Fujii N, Suresh V, Arzumanian AS, Chan A, Nath AK, McCain R, MacRae CA, Peterson R, Boss GR, Davisson VJ, Knipp GT. Investigating the Replacement of Carboxylates with Carboxamides to Modulate the Safety and Efficacy of Platinum(II) Thioether Cyanide Scavengers. Toxicol Sci 2023; 197:kfad119. [PMID: 37952247 PMCID: PMC10823771 DOI: 10.1093/toxsci/kfad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023] Open
Abstract
Cyanide represents a persistent threat for accidental or malicious misuse due to easy conversion into a toxic gas and access to large quantities through several industries. The high safety index of hydroxocobalamin is a cornerstone quality as a cyanide scavenger. Unfortunately, intravenous infusion of hydroxocobalamin limits the utility in a mass casualty setting. We previously reported platinum(II) [Pt(II)] complexes with trans-directing sulfur ligands as an efficacious alternative to hydroxocobalamin when delivered by a bolus intramuscular injection in mice and rabbits. Thus, to enable Pt(II) as an alternative to hydroxocobalamin, a high safety factor is needed. The objective is to maintain efficacy and mitigate the risk for nephrotoxicity. Platinum amino acid complexes with the ability to form five- or six-membered rings and possessing either carboxylates or carboxamides are evaluated in vitro for cyanide scavenging. In vivo efficacy was evaulated in the zebrafish and mice cyanide exposure models. In addition, Pt(II) complex toxicity and pharmacokinetics were evaluated in a cyanide naive Sprague-Dawley model. Doses for toxicity are escalated to 5x from the efficacious dose in mice using a body surface area adjustment. The results show the carboxamide ligands display a time and pH dependence on cyanide scavenging in vitro and efficacy in vivo. Additionally, exchanging the carboxylate for carboxamide showed reduced indications of renal injury. A pharmacokinetic analysis of the larger bidentate complexes displayed rapid absorption by intramuscular administration and having similar plasma exposure. These findings point to the importance of pH and ligand structures for methionine carboxamide complexes with Pt(II).
Collapse
Affiliation(s)
- Matthew M Behymer
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, USA
| | - Huaping Mo
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Naoaki Fujii
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Vallabh Suresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ari S Arzumanian
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, California 92093, USA
| | - Anjali K Nath
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Robyn McCain
- Purdue Translational Pharmacology CTSI Core Facility, Purdue University, West Lafayette, Indiana, USA
| | - Calum A MacRae
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Randall Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, California 92093, USA
| | - Vincent Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gregory T Knipp
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
2
|
Behymer M, Mo H, Fujii N, Suresh V, Chan A, Lee J, Nath AK, Saha K, Mahon SB, Brenner M, MacRae CA, Peterson R, Boss GR, Knipp GT, Davisson VJ. Identification of Platinum(II) Sulfide Complexes Suitable as Intramuscular Cyanide Countermeasures. Chem Res Toxicol 2022; 35:1983-1996. [PMID: 36201358 PMCID: PMC9682522 DOI: 10.1021/acs.chemrestox.2c00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Indexed: 01/09/2023]
Abstract
The development of rapidly acting cyanide countermeasures using intramuscular injection (IM) represents an unmet medical need to mitigate toxicant exposures in mass casualty settings. Previous work established that cisplatin and other platinum(II) or platinum(IV)-based agents effectively mitigate cyanide toxicity in zebrafish. Cyanide's in vivo reaction with platinum-containing materials was proposed to reduce the risk of acute toxicities. However, cyanide antidote activity depended on a formulation of platinum-chloride salts with dimethyl sulfoxide (DMSO) followed by dilution in phosphate-buffered saline (PBS). A working hypothesis to explain the DMSO requirement is that the formation of platinum-sulfoxide complexes activates the cyanide scavenging properties of platinum. Preparations of isolated NaPtCl5-DMSO and Na (NH3)2PtCl-DMSO complexes in the absence of excess DMSO provided agents with enhanced reactivity toward cyanide in vitro and fully recapitulated in vivo cyanide rescue in zebrafish and mouse models. The enhancement of the cyanide scavenging effects of the DMSO ligand could be attributed to the activation of platinum(IV) and (II) with a sulfur ligand. Unfortunately, the efficacy of DMSO complexes was not robust when administered IM. Alternative Pt(II) materials containing sulfide and amine ligands in bidentate complexes show enhanced reactivity toward cyanide addition. The cyanide addition products yielded tetracyanoplatinate(II), translating to a stoichiometry of 1:4 Pt to each cyanide scavenger. These new agents demonstrate a robust and enhanced potency over the DMSO-containing complexes using IM administration in mouse and rabbit models of cyanide toxicity. Using the zebrafish model with these Pt(II) complexes, no acute cardiotoxicity was detected, and dose levels required to reach lethality exceeded 100 times the effective dose. Data are presented to support a general chemical design approach that can expand a new lead candidate series for developing next-generation cyanide countermeasures.
Collapse
Affiliation(s)
- Matthew
M. Behymer
- Department
of Industrial and Physical Pharmacy, Purdue
University, 575 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Huaping Mo
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575
Stadium Mall Drive, West Lafayette, Indiana47907, United
States
| | - Naoaki Fujii
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575
Stadium Mall Drive, West Lafayette, Indiana47907, United
States
| | - Vallabh Suresh
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575
Stadium Mall Drive, West Lafayette, Indiana47907, United
States
| | - Adriano Chan
- Department
of Medicine, University of California, San Diego, California92093, United States
| | - Jangweon Lee
- Beckman
Laser Institute and Medical Clinic, Department of Medicine, University of California, Irvine, California92697, United States
| | - Anjali K. Nath
- Department
of Cardiology, Beth Israel Deaconess Medical
Center, Boston, Massachusetts02115, United States
| | - Kusumika Saha
- Division
of Cardiovascular Medicine, Brigham and
Women’s Hospital, Boston, Massachusetts02115, United States
| | - Sari B. Mahon
- Beckman
Laser Institute and Medical Clinic, Department of Medicine, University of California, Irvine, California92697, United States
| | - Matthew Brenner
- Beckman
Laser Institute and Medical Clinic, Department of Medicine, University of California, Irvine, California92697, United States
| | - Calum A. MacRae
- Division
of Cardiovascular Medicine, Brigham and
Women’s Hospital, Boston, Massachusetts02115, United States
| | - Randall Peterson
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake
City, Utah84112, United States
| | - Gerry R. Boss
- Department
of Medicine, University of California, San Diego, California92093, United States
| | - Gregory T. Knipp
- Department
of Industrial and Physical Pharmacy, Purdue
University, 575 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Vincent Jo Davisson
- Department
of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575
Stadium Mall Drive, West Lafayette, Indiana47907, United
States
| |
Collapse
|
3
|
Hendry-Hofer TB, Severance CC, Bhadra S, Ng PC, Soules K, Lippner DS, Hildenberger DM, Rhoomes MO, Winborn JN, Logue BA, Rockwood GA, Bebarta VS. Evaluation of aqueous dimethyl trisulfide as an antidote to a highly lethal cyanide poisoning in a large swine model. Clin Toxicol (Phila) 2021; 60:95-101. [PMID: 34142637 DOI: 10.1080/15563650.2021.1935992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cyanide is a rapid acting, lethal, metabolic poison and remains a significant threat. Current FDA-approved antidotes are not amenable or efficient enough for a mass casualty incident. OBJECTIVE The objective of this study is to evaluate short and long-term efficacy of intramuscular aqueous dimethyl trisulfide (DMTS) on survival and clinical outcomes in a swine model of cyanide exposure. METHODS Anesthetized swine were instrumented and acclimated until breathing spontaneously. Potassium cyanide infusion was initiated and continued until 5 min after the onset of apnea. Subsequently, animals were treated with intramuscular DMTS (n = 11) or saline control (n = 10). Laboratory values and DMTS blood concentrations were assessed at various time points and physiological parameters were monitored continuously until the end of the experiment unless death occurred. A subset of animals treated with DMTS (n = 5) were survived for 7 days to evaluate muscle integrity by repeat biopsy and neurobehavioral outcomes. RESULTS Physiological parameters and time to apnea were similar in both groups at baseline and at time of treatment. Survival in the DMTS-treated group was 90% and 30% in saline controls (p = 0.0034). DMTS-treated animals returned to breathing at 12.0 ± 10.4 min (mean ± SD) compared to 22.9 ± 7.0 min (mean ± SD) in the 3 surviving controls. Blood collected prior to euthanasia showed improved blood lactate concentrations in the DMTS treatment group; 5.47 ± 2.65 mmol/L vs. 9.39 ± 4.51 mmol/L (mean ± SD) in controls (p = 0.0310). Low concentrations of DMTS were detected in the blood, gradually increasing over time with no elimination phase observed. There was no mortality, histological evidence of muscle trauma, or observed adverse neurobehavioral outcomes, in DMTS-treated animals survived to 7 days. CONCLUSION Intramuscular administration of aqueous DMTS improves survival following cyanide poisoning with no observed long-term effects on muscle integrity at the injection site or adverse neurobehavioral outcomes.
Collapse
Affiliation(s)
- Tara B Hendry-Hofer
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carter C Severance
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Subrata Bhadra
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Patrick C Ng
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Brooke Army Medical Center, Ft Sam Houston, San Antonio, TX, USA
| | - Kirsten Soules
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dennean S Lippner
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Diane M Hildenberger
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Melissa O Rhoomes
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Jessica N Winborn
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Brian A Logue
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Gary A Rockwood
- Medical Toxicology Division, Biochemistry and Physiology Branch, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
4
|
Ma KH, Lippner DS, Basi KA, DeLeon SM, Cappuccio WR, Rhoomes MO, Hildenberger DM, Hoard-Fruchey HM, Rockwood GA. Cyanide Poisoning Compromises Gene Pathways Modulating Cardiac Injury in Vivo. Chem Res Toxicol 2021; 34:1530-1541. [PMID: 33914522 DOI: 10.1021/acs.chemrestox.0c00467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Smoke inhalation from a structure fire is a common route of cyanide poisoning in the U.S. Cyanide inhibits cellular respiration, often leading to death. Its rapid distribution throughout the body can result in injuries to multiple organs, and cyanide victims were reported to experience myocardial infarction and other cardiac complications. However, molecular mechanisms of such complications are yet to be elucidated. While FDA-approved CN antidotes such as sodium thiosulfate and hydroxocobalamin are clinically used, they have foreseeable limitations during mass casualty situations because they require intravenous administration. To facilitate the development of better antidotes and therapeutic treatments, a global view of molecular changes induced by cyanide exposure is necessary. As an exploratory pursuit, we performed oligonucleotide microarrays to establish cardiac transcriptomes of an animal model of nose-only inhalation exposure to hydrogen cyanide (HCN), which is relevant to smoke inhalation. We also profiled cardiac transcriptomes after subcutaneous injection of potassium cyanide (KCN). Although the KCN injection model has often been used to evaluate medical countermeasures, this study demonstrated that cardiac transcriptomes are largely different from that of the HCN inhalation model at multiple time points within 24 h after exposure. Pathway analysis identified that HCN-induced transcriptomes were enriched with genes encoding mediators of pathways critical in modulation of cardiac complications and that a large number of such genes were significantly decreased in expression. We utilized the upstream regulatory analysis to propose drugs that can be potentially employed to treat cyanide-induced cardiac complications.
Collapse
Affiliation(s)
- Ki H Ma
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Dennean S Lippner
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Kelly A Basi
- U.S. Army Combat Capabilities Development Command, Chemical Biological Center, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Susan M DeLeon
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - William R Cappuccio
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Melissa O Rhoomes
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Diane M Hildenberger
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Heidi M Hoard-Fruchey
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Gary A Rockwood
- Medical Toxicology Research Division, U.S. Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
5
|
Lavon O, Rockwood GA, Eisenkraft A. Can isosorbide dinitrate oral spray serve as an immediate bridging therapy for a mass cyanide poisoning? Clin Toxicol (Phila) 2020; 59:734-739. [PMID: 33274646 DOI: 10.1080/15563650.2020.1856382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE In this proof-of-concept study, the aim was to evaluate the short-term clinical effectiveness of isosorbide dinitrate (ISDN) oral spray in non-anaesthetized cyanide-poisoned swine. METHODS A comparative study was conducted using domestic swine. Animals were intravenously poisoned with potassium cyanide (KCN), either 2 mg/kg or 4 mg/kg dose. Two control groups (one for each cyanide dose) were not further treated. Two other groups (one for each cyanide dose) were treated within 1 min after poisoning with ISDN oral spray: 3 spray actuations (averaging a total of 3.75 mg) after the lower cyanide dose and 4 spray actuations (averaging a total of 5.0 mg) after the higher dose. The study outcomes were clinical score, time to death, and blood tests including pH, lactate, and methemoglobin levels. RESULTS All the animals started to convulse within 20 to 30 sec after KCN poisoning, then became unresponsive and hemodynamically depressed after another 20 to 30 sec. After the KCN 2 mg/kg dose, 3 of 4 control animals survived, while all treated animals survived. Compared with control animals, ISDN-treated animals displayed significantly better clinical scores starting 5 min after KCN poisoning. Acidosis was significantly more pronounced in the untreated animals. After the KCN 4 mg/kg dose, similar survival rates were observed for control and ISDN-treated groups (1/4), but treated animals had longer time to death and better pH and lactate levels. CONCLUSION ISDN oral spray administration following KCN poisoning in this porcine model did not result in statistically significant increased survival. However, based on clinical scores and clinical laboratory values, ISDN may benefit as a bridging countermeasure until currently-available specific cyanide antidotes can be administered. Further research is warranted to better characterize this potential role of ISDN in cyanide poisoning.
Collapse
Affiliation(s)
- Ophir Lavon
- Clinical Pharmacology and Toxicology Unit, Carmel Medical Center, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gary A Rockwood
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Arik Eisenkraft
- Institute for Research in Military Medicine, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
6
|
Yan Y, Zhang J, Yi S, Liu L, Huang C. Lighting up forensic science by aggregation-induced emission: A review. Anal Chim Acta 2020; 1155:238119. [PMID: 33766314 DOI: 10.1016/j.aca.2020.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 01/30/2023]
Abstract
Forensic science requires a fast, sensitive, and anti-interfering imaging tool for on-site investigation and bio-analysis. The aggregation-induced emission (AIE) phenomenon exhibits remarkable luminescence properties (large Stokes shift, diverse molecular structures, and high photo-stability), which can provide a viable solution for on-site analysis, while at the same time overcoming the problem of aggregation-caused quenching (ACQ). Based on the outstanding performance in chemical analysis and bio-sensing, AIE materials have great prospects in the field of forensic science. Therefore, the application of AIE in forensic science has been summarized for the first time in this article. After a brief introduction to the concept and development of AIE, its applications in the determination of toxic or hazardous substances, based on data on poisoning deaths, has been summarized. Subsequently, besides the bio-imaging function, other applications of AIE in analyzing markers related to forensic genetics, forensic pathology, (focusing on the corpse) and clinical forensics (focusing on the living) have been discussed. In addition, applications of AIE molecules in criminal investigations, including recognition of fingerprints and blood stains, detection of explosives and chemical warfare agents, and anti-counterfeiting have also been presented. It is hoped that this review will light up the future of forensic science by stimulating more research work on the suitability of AIE materials in advancing forensic science.
Collapse
Affiliation(s)
- Yibo Yan
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China
| | - Junchao Zhang
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China.
| | - Chuixiu Huang
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China.
| |
Collapse
|