1
|
Bourke LA, Zdenek CN, Huynh TM, Hodgson WC, Alagón A, Castro EN, Jones J, Fry BG. Fangs and foliage: Unearthing the haemotoxic secrets of cannabis-dwelling rattlesnakes. Toxicon 2024; 244:107756. [PMID: 38740096 DOI: 10.1016/j.toxicon.2024.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Despite a recent surge in high-throughput venom research that has enabled many species to be studied, some snake venoms remain understudied. The long-tailed rattlesnakes (Crotalus ericsmithi, C. lannomi, and C. stejnegeri) are one group where such research lags, largely owing to the rarity of these snakes and the hazardous areas, ripe with drug (marijuana and opium) production, they inhabit in Mexico. To fill this knowledge gap, we used multiple functional assays to examine the coagulotoxic (including across different plasma types), neurotoxic, and myotoxic activity of the venom of the long-tailed rattlesnakes. All crude venoms were shown to be potently anticoagulant on human plasma, which we discovered was not due to the destruction of fibrinogen, except for C. stejnegeri displaying minor fibrinogen destruction activity. All venoms exhibited anticoagulant activity on rat, avian, and amphibian plasmas, with C. ericsmithi being the most potent. We determined the mechanism of anticoagulant activity by C. ericsmithi and C. lannomi venoms to be phospholipid destruction and inhibition of multiple coagulation factors, leading to a net disruption of the clotting cascade. In the chick biventer assay, C. ericsmithi and C. lannomi did not exhibit neurotoxic activity but displayed potential weak myotoxic activity. BIRMEX® (Faboterápico Polivalente Antiviperino) antivenom was not effective in neutralising this venom effect. Overall, this study provides an in-depth investigation of venom function of understudied long-tailed rattlesnakes and provides a springboard for future venom and ecology research on the group.
Collapse
Affiliation(s)
- Lachlan A Bourke
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Christina N Zdenek
- School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tam M Huynh
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Wayne C Hodgson
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, 62210, Mexico
| | - Edgar N Castro
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, 62210, Mexico; Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Avenida Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo., Mexico
| | - Jason Jones
- Herp.mx A.C, Villa Del Álvarez, Colima, Mexico
| | - Bryan G Fry
- Adaptive Biotoxicology Lab, School of the Environment, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Okot DF, Namukobe J, Vudriko P, Anywar G, Heydenreich M, Omowumi OA, Byamukama R. In Vitro Anti-Venom Potentials of Aqueous Extract and Oils of Toona ciliata M. Roem against Cobra Venom and Chemical Constituents of Oils. Molecules 2023; 28:molecules28073089. [PMID: 37049851 PMCID: PMC10096364 DOI: 10.3390/molecules28073089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
There are high mortality and morbidity rates from poisonous snakebites globally. Many medicinal plants are locally used for snakebite treatment in Uganda. This study aimed to determine the in vitro anti-venom activities of aqueous extract and oils of Toona ciliata against Naja melanoleuca venom. A mixture of venom and extract was administered intramuscularly in rats. Anticoagulant, antiphospholipase A2 (PLA2) inhibition assay, and gel electrophoresis for anti-venom activities of oils were done. The chemical constituents of the oils of ciliata were identified using Gas chromatography-tandem mass spectroscopy (GC-MS/MS). The LD50 of the venom was 0.168 ± 0.21 µg/g. The venom and aqueous extract mixture (1.25 µg/g and 3.5 mg/g) did not cause any rat mortality, while the control with venom only (1.25 µg/g) caused death in 1 h. The aqueous extract of T. ciliata inhibited the anticoagulation activity of N. melanoleuca venom from 18.58 min. to 4.83 min and reduced the hemolytic halo diameter from 24 to 22 mm. SDS-PAGE gel electrophoresis showed that oils completely cleared venom proteins. GC-MS/MS analysis showed that the oils had sesquiterpene hydrocarbons (60%) in the volatile oil (VO) and oxygenated sesquiterpenes (48.89%) in the non-volatile oils (NVO). Some major compounds reported for the first time in T. ciliata NVOs were: Rutamarin (52.55%), β-Himachalol (9.53%), Girinimbine (6.68%) and Oprea1 (6.24%). Most compounds in the VO were reported for the first time in T. ciliata, including the major ones Santalene (8.55%) and Himachal-7-ol (6.69%). The result showed that aqueous extract and oils of T. ciliata have anti-venom/procoagulant activities and completely neutralized the venom. We recommend a study on isolation and testing the pure compounds against the same venom.
Collapse
Affiliation(s)
- David Fred Okot
- Department of Chemistry, Makerere University, Kampala P.O. Box 7062, Uganda
- Centre for Snakebites and Venom Research, Department of Chemistry, Gulu University, Gulu P.O. Box 166, Uganda
| | - Jane Namukobe
- Department of Chemistry, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Patrick Vudriko
- Research Centre for Tropical Diseases and Vector Control, Department of Veterinary Pharmacy, Clinics and Comparative Medicine, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Godwin Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Matthias Heydenreich
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany
| | - Oyedeji Adebola Omowumi
- Department of Chemical & Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Private Bag X1, Mthatha 5099, South Africa
| | - Robert Byamukama
- Department of Chemistry, Makerere University, Kampala P.O. Box 7062, Uganda
| |
Collapse
|
3
|
Youngman NJ, Walker A, Naude A, Coster K, Sundman E, Fry BG. Varespladib (LY315920) neutralises phospholipase A 2 mediated prothrombinase-inhibition induced by Bitis snake venoms. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108818. [PMID: 32512199 DOI: 10.1016/j.cbpc.2020.108818] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 01/28/2023]
Abstract
Anticoagulant toxicity is a common function of venoms produced by species within the Bitis genus. Potent inhibition of the prothrombinase complex is an identified mechanism of action for the dwarf species B. cornuta and B. xeropaga, along with some localities of B. atropos and B. caudalis. Snake venom phospholipase A2 toxins that inhibit the prothrombinase complex have been identified in snake venom, including an isolated phospholipase A2 toxin from B. caudalis. Current research is investigating the ability of the drug varespladib to inhibit snake venom phospholipase A2 toxins and reduce their toxicity. In particular, varespladib is being investigated as a treatment that could be administered prior to hospital referral which is a major necessity for species such as those from the genus Bitis, due to envenomations often occurring in remote regions of Africa where antivenom is unavailable. Using previously validated coagulation assays, this study aimed to determine if the toxins responsible for inhibition of the prothrombinase complex in the venom of four Bitis species are phospholipase A2 toxins, and if varespladib is able to neutralise this anticoagulant activity. Our results demonstrate that varespladib strongly neutralises the prothrombinase-inhibiting effects of all venoms tested in this study, and that this prothrombinase-inhibiting mechanism of anticoagulant activity is driven by phospholipase A2 class toxins in these four species. This study extends previous reports demonstrating varespladib has broad efficacy for treatment of phospholipase A2 rich snake venoms, indicating it also inhibits their anticoagulant effects mediated by prothrombinase-inhibition.
Collapse
Affiliation(s)
- Nicholas J Youngman
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Andrew Walker
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Arno Naude
- Snakebite Assist, Pretoria ZA-0001, South Africa
| | | | - Eric Sundman
- Universeum, Södra Vägen 50, 412 54 Gothenburg, Sweden
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
4
|
Comparison of biological and biochemical characteristics of venom from rattlesnakes in the southern Baja California Peninsula. Toxicon 2018; 148:197-201. [DOI: 10.1016/j.toxicon.2018.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/28/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
|
5
|
Rivas E, Neri-Castro E, Bénard-Valle M, Hernánez-Dávila AI, Zamudio F, Alagón A. General characterization of the venoms from two species of rattlesnakes and an intergrade population (C. lepidus x aquilus) from Aguascalientes and Zacatecas, Mexico. Toxicon 2017; 138:191-195. [DOI: 10.1016/j.toxicon.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/31/2017] [Accepted: 09/05/2017] [Indexed: 11/28/2022]
|
6
|
Two acidic, anticoagulant PLA2 isoenzymes purified from the venom of monocled cobra Naja kaouthia exhibit different potency to inhibit thrombin and factor Xa via phospholipids independent, non-enzymatic mechanism. PLoS One 2014; 9:e101334. [PMID: 25118676 PMCID: PMC4131862 DOI: 10.1371/journal.pone.0101334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Background The monocled cobra (Naja kaouthia) is responsible for snakebite fatality in Indian subcontinent and in south-western China. Phospholipase A2 (PLA2; EC 3.1.1.4) is one of the toxic components of snake venom. The present study explores the mechanism and rationale(s) for the differences in anticoagulant potency of two acidic PLA2 isoenzymes, Nk-PLA2α (13463.91 Da) and Nk-PLA2β (13282.38 Da) purified from the venom of N. kaouthia. Principal Findings By LC-MS/MS analysis, these PLA2s showed highest similarity (23.5% sequence coverage) with PLA2 III isolated from monocled cobra venom. The catalytic activity of Nk-PLA2β exceeds that of Nk-PLA2α. Heparin differentially regulated the catalytic and anticoagulant activities of these Nk-PLA2 isoenzymes. The anticoagulant potency of Nk-PLA2α was comparable to commercial anticoagulants warfarin, and heparin/antithrombin-III albeit Nk-PLA2β demonstrated highest anticoagulant activity. The anticoagulant action of these PLA2s was partially contributed by a small but specific hydrolysis of plasma phospholipids. The strong anticoagulant effect of Nk-PLA2α and Nk-PLA2β was achieved via preferential, non-enzymatic inhibition of FXa (Ki = 43 nM) and thrombin (Ki = 8.3 nM), respectively. Kinetics study suggests that the Nk-PLA2 isoenzymes inhibit their “pharmacological target(s)” by uncompetitive mechanism without the requirement of phospholipids/Ca2+. The anticoagulant potency of Nk-PLA2β which is higher than that of Nk-PLA2α is corroborated by its superior catalytic activity, its higher capacity for binding to phosphatidylcholine, and its greater strength of thrombin inhibition. These PLA2 isoenzymes thus have evolved to affect haemostasis by different mechanisms. The Nk-PLA2β partially inhibited the thrombin-induced aggregation of mammalian platelets suggesting its therapeutic application in the prevention of unwanted clot formation. Conclusion/Significance In order to develop peptide-based superior anticoagulant therapeutics, future application of Nk-PLA2α and Nk-PLA2β for the treatment and/or prevention of cardiovascular disorders are proposed.
Collapse
|
7
|
Peng L, Xu X, Guo M, Yan X, Wang S, Gao S, Zhu S. Effects of metal ions and disulfide bonds on the activity of phosphodiesterase from Trimeresurus stejnegeri venom. Metallomics 2014; 5:920-7. [PMID: 23775423 DOI: 10.1039/c3mt00031a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obviously different from the other known phosphodiesterases, the phosphodiesterase from Trimeresurus stejnegeri venom (TS-PDE) consists of two different chains linked with disulfide bonds and contains both endogenous Cu(2+) and Zn(2+). Cu(2+) and Zn(2+) are important for its phosphodiesterase activity. In this study, the effects of metal ions and small-molecule reductants on its structure and activity have been investigated by polyacrylamide gel electrophoresis, high performance liquid chromatography, fluorescence and electron paramagnetic resonance spectroscopy. The results show that TS-PDE has one class of Zn(2+) binding site and two classes of Cu(2+) binding site, including the high affinity activator sites and the low affinity sites. Cu(2+) ions function as a switch for its phosphodiesterase activity. The catalytic activity of TS-PDE does not have an absolute requirement for Cu(2+) and Zn(2+). Mg(2+), Mn(2+), Ni(2+), Co(2+) and Ca(2+) are all effective for its phosphodiesterase activity. TS-PDE has seven disulfide bonds and ten free cysteine residues. l-Ascorbate inhibits the phosphodiesterase activity of TS-PDE through reduction of the Cu(2+), while dithiothreitol, glutathione and tris(2-carboxyethyl)phosphine inhibit the phosphodiesterase activity of TS-PDE by reducing both the Cu(2+) and disulfide bonds. The catalytic activity of TS-PDE relies on its disulfide bonds and bimetallic cluster. In addition, biologically-relevant reductants, glutathione and l-ascorbate, have been found to be endogenous inhibitors to the phosphodiesterase activity of TS-PDE.
Collapse
Affiliation(s)
- Lili Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, P. R. China
| | | | | | | | | | | | | |
Collapse
|
8
|
Song J, Xu X, Zhang Y, Guo M, Yan X, Wang S, Gao S. Purification and characterization of AHPM, a novel non-hemorrhagic P-IIIc metalloproteinase with α-fibrinogenolytic and platelet aggregation-inhibition activities, from Agkistrodon halys pallas venom. Biochimie 2013; 95:709-18. [DOI: 10.1016/j.biochi.2012.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 10/17/2012] [Indexed: 10/27/2022]
|
9
|
Purification and partial characterization of a novel phosphodiesterase from the venom of Trimeresurus stejnegeri: Inhibition of platelet aggregation. Biochimie 2011; 93:1601-9. [DOI: 10.1016/j.biochi.2011.05.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 05/25/2011] [Indexed: 01/25/2023]
|
10
|
Saikia D, Thakur R, Mukherjee AK. An acidic phospholipase A(2) (RVVA-PLA(2)-I) purified from Daboia russelli venom exerts its anticoagulant activity by enzymatic hydrolysis of plasma phospholipids and by non-enzymatic inhibition of factor Xa in a phospholipids/Ca(2+) independent manner. Toxicon 2011; 57:841-50. [PMID: 21356226 DOI: 10.1016/j.toxicon.2011.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 02/12/2011] [Accepted: 02/15/2011] [Indexed: 10/18/2022]
Abstract
A homodimeric acidic PLA(2) (RVVA-PLA(2)-I) of 58.0 kDa molecular weight purified from Russell's viper (Daboia russelli) venom demonstrated dose-dependent catalytic, strong anticoagulant and indirect hemolytic activities and inhibited blood coagulation cascade in both enzymatic and non-enzymatic mechanisms. In in vitro condition, RVVA-PLA(2)-I showed preferential hydrolysis of phosphatidylcholine with a K(m) and V(max) values of 0.65 mM and 28.9 μmol min(-1), respectively. Biochemical study and GC-analysis of plasma phospholipids hydrolysis by PLA(2) revealed that anticoagulant activity of RVVA-PLA(2)-I was partly attributed by the enzymatic hydrolysis of pro-coagulant phospholipids PC, followed by PS. The spectrofluorometric and gel-filtration analyses documented binding of RVVA-PLA(2)-I with activated factor X and PC; however, it does not bind with factor Va, prothrombin and thrombin. Therefore, this anticoagulant PLA(2) inhibits the blood coagulation cascade non-enzymatically by binding with coagulation factor Xa, even in the absence of phospholipids and Ca(2+) and thus slows down the blood coagulation by partially inhibiting the prothrombin activation. Chemical modification of essential amino acids present in the active site, neutralization with Azadirachta indica leaves extract (AIPLAI) and heat-inactivation study reinforce the association of catalytic and anticoagulant activity of RVVA-PLA(2)-I and also throw a light on its non-enzymatic mechanism of anticoagulant action.
Collapse
Affiliation(s)
- Debashree Saikia
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784 028, Assam, India
| | | | | |
Collapse
|
11
|
Sajevic T, Leonardi A, Križaj I. Haemostatically active proteins in snake venoms. Toxicon 2011; 57:627-45. [PMID: 21277886 DOI: 10.1016/j.toxicon.2011.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
Abstract
Snake venom proteins that affect the haemostatic system can cause (a) lowering of blood coagulability, (b) damage to blood vessels, resulting in bleeding, (c) secondary effects of bleeding, e.g. hypovolaemic shock and organ damage, and (d) thrombosis. These proteins may, or may not, be enzymes. We review the data on the most relevant haemostatically active proteinases, phospholipases A₂, L-amino acid oxidases and 5'-nucleotidases from snake venoms. We also survey the non-enzymatic effectors of haemostasis from snake venoms--disintegrins, C-type lectins and three-finger toxins. Medical applications have already been found for some of these snake venom proteins. We describe those that have already been approved as drugs to treat haemostatic disorders or are being used to diagnose such health problems. No clinical applications, however, currently exist for the majority of snake venom proteins acting on haemostasis. We conclude with the most promising potential uses in this respect.
Collapse
Affiliation(s)
- Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
12
|
Wu H, Xu X, Shen D, Peng L, Song J, Zhang Y. Binding of Ca2+ and Zn2+ to factor IX/X-binding protein from venom of Agkistrodon halys Pallas: stabilization of the structure during GdnHCl-induced and thermally induced denaturation. J Biol Inorg Chem 2010; 16:69-79. [PMID: 20830601 DOI: 10.1007/s00775-010-0703-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]
Abstract
Coagulation factor IX/coagulation factor X binding protein from the venom of Agkistrodon halys Pallas (AHP IX/X-bp) is a unique coagulation factor IX/coagulation factor X binding protein (IX/X-bp). Among all IX/X-bps identified, only AHP IX/X-bp is a Ca(2+)- and Zn(2+)-binding protein. The binding properties of Ca(2+) and Zn(2+) ions binding to apo-AHP IX/X-bp and their effects on the stability of the protein have been investigated by isothermal titration calorimetry, fluorescence spectroscopy, and differential scanning calorimetry. The results show that AHP IX/X-bp has two metal binding sites, one specific for Ca(2+) with lower affinity for Zn(2+) and one specific for Zn(2+) with lower affinity for Ca(2+). The bindings of Ca(2+) and Zn(2+) in the two sites are entropy- and enthalpy-driven. The binding affinity of AHP IX/X-bp for Zn(2+) is 1 order of magnitude higher than for Ca(2+) for either high-affinity binding or low-affinity binding, which accounts for the existence of one Zn(2+) in the purified AHP IX/X-bp. Guanidine hydrochloride (GdnHCl)-induced and thermally induced denaturations of Ca(2+)-Ca(2+)-AHP IX/X-bp, Zn(2+)-Zn(2+)-AHP IX/X-bp, and Ca(2+)-Zn(2+)-AHP IX/X-bp are all a two-state processes with no detectable intermediate state(s), indicating the Ca(2+)/Zn(2+)-induced tight packing of the protein. Ca(2+) and Zn(2+) increase the structural stability of AHP IX/X-bp against GdnHCl or thermal denaturation to a similar extent. Although Ca(2+) and Zn(2+) have no obvious effect on the secondary structure of AHP IX/X-bp, they induce different rearrangements in local conformation. The Zn(2+)-stabilized specific conformation of AHP IX/X-bp may be helpful to its recognition of the structure of coagulation factor IX. This work suggests that in vitro, Ca(2+) plays a structural rather than an active role in the anticoagulation of AHP IX/X-bp, whereas Zn(2+) plays both structural and active roles in the anticoagulation. In blood, Ca(2+) binds to AHP IX/X-bp and stabilizes its structure, whereas Zn(2+) cannot bind to AHP IX/X-bp owing to the low Zn(2+) concentration. AHP IX/X-bp prolongs the clotting time in vivo through its binding only with coagulation factor X/activated coagulation factor X.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Structural characterization of N-linked oligosaccharides of Defibrase from Agikistrodon acutus by sequential exoglycosidase digestion and MALDI-TOF mass spectrometry. Toxicon 2010; 55:421-9. [DOI: 10.1016/j.toxicon.2009.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 09/01/2009] [Accepted: 09/15/2009] [Indexed: 11/20/2022]
|