1
|
Wakil W, Kavallieratos NG, Eleftheriadou N, Riasat T, Ghazanfar MU, Rasool KG, Husain M, Aldawood AS. The Potential of Two Entomopathogenic Fungi and Enhanced Diatomaceous Earth Mixed with Abamectin: A Comprehensive Study on Mortality, Progeny Production, Application Method, and Surface Application against Tribolium castaneum. Pathogens 2023; 12:773. [PMID: 37375463 PMCID: PMC10304705 DOI: 10.3390/pathogens12060773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
This study determined the efficacy of Beauveria bassiana (Bals. -Criv.) Vuill., Metarhizium anisopliae (Metchnikoff) Sorokin, and diatomaceous earth mixed with abamectin (DEA) alone and in their combinations for the integrated management of larvae and adults of Tribolium castaneum (Herbst) from three field populations of Pakistan (Multan, Rawalpindi, and Rahim Yar Khan) and one laboratory population (Faisalabad). Treatments were applied on three surfaces, namely, viz. steel, concrete, and jute bags, implementing two application methods, dusting and spraying. The combined treatments were more effective in comparison with single treatments for both larvae and adults. Overall, the highest mortality rates were recorded in the Faisalabad population, followed by the Rehaim Yar Khan, Rawalpindi, and Multan populations. Progeny production was suspended 21 days after exposure to the combined treatment of DEA and both fungi in all populations except Rawalpindi. Larvae were found to be more susceptible than adults in all treatments and intervals. Dusting was more efficient than spraying for both larvae and adults and for all the populations studied. The present study provides a wholistic understanding of the impact of different factors on the success of the combined treatments using DEA and entomopathogenic fungi, supporting their use as surface treatments.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
- Senckenberg German Entomological Institute, D-15374 Müncheberg, Germany
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Nikoleta Eleftheriadou
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Tahira Riasat
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Zoology, GC University, Faisalabad 38000, Pakistan
| | - Muhammad Usman Ghazanfar
- Department of Plant Pathology, College of Agriculture, Sargodha University, Sargodha 40100, Pakistan;
| | - Khawaja G. Rasool
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (K.G.R.); (M.H.); (A.S.A.)
| | - Mureed Husain
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (K.G.R.); (M.H.); (A.S.A.)
| | - Abdulrahman S. Aldawood
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (K.G.R.); (M.H.); (A.S.A.)
| |
Collapse
|
2
|
Wakil W, Kavallieratos NG, Ghazanfar MU, Usman M. Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34912-34929. [PMID: 35040065 DOI: 10.1007/s11356-021-17527-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
In the current study we have tested the application of Beauveria bassiana (Hypocreales: Cordycipitaceae) alone and in combination with fipronil at two doses against Tribolium castaneum (Coleoptera: Tenebrionidae), Rhyzopertha dominica (Coleoptera: Bostrychidae), Sitophilus granarius (Coleoptera: Curculionidae), and Trogoderma granarium (Coleoptera: Dermestidae) under laboratory and field conditions. At laboratory conditions, the combination of B. bassiana with the highest dose of fipronil produced the highest mortality. At different temperatures, mortality was increased with the increase in temperature. Maximum mortality was observed at 30 °C, followed by 25 °C and 20 °C for all tested species. Different treatments significantly reduced the progeny number in comparison to control groups for all tested species at all temperatures. In the persistence trial, all treatments that included the combinations of B. bassiana with fipronil produced significantly higher mortalities than the single treatments for all tested species over a period of 6 months. Furthermore, all treatments significantly reduced the number of progenies of all insect species in comparison with the control groups over the same storage period. In field trials, mortalities of all tested insect species were significantly higher on wheat treated with B. bassiana, fipronil, or their combinations than on controls for an entire storage period of 180 days. Overall, R. dominica was found the most susceptible species followed by S. granarius, T. castaneum, and T. granarium. The findings of the current study suggest that the use of B. bassiana and fipronil as grain protectants may provide elevated control against major stored-grain insect species during a prolonged period of storage.
Collapse
Affiliation(s)
- Waqas Wakil
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan.
- Senckenberg German Entomological Institute, Eberswalder str. 90, 15374, Müncheberg, Germany.
| | - Nickolas G Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Athens, Attica, Greece.
| | - Muhammad Usman Ghazanfar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Muhammad Usman
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
3
|
Ozone Efficiency on Two Coleopteran Insect Pests and Its Effect on Quality and Germination of Barley. INSECTS 2022; 13:insects13040318. [PMID: 35447760 PMCID: PMC9027898 DOI: 10.3390/insects13040318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Rhyzopertha dominica (Fabricius) and Tribolium castaneum (Herbst) are notorious global pests, destroying various stored grains, including barley, wheat, oats, maize, and rice. Ozone (O3) is a promising fumigant to control pests in stored grain since it can safely and rapidly auto-decompose without leaving residues, however, relatively few studies have focused on the toxicity of O3 on stored grain pests in stored barley. In this study we not only explored the susceptibility of all life stages of R. dominica and T. castaneum in barley seeds to different durations of gaseous O3, but also investigated the effect of O3 on germination ability, seedling growth, and quality of barley. O3 was effective against all life stages of two species in barley under sufficient exposure times without negative impacts affecting the commercial quality of barley. However, the germination ability and seedling growth were adversely impacted at longer O3 exposure times. Thus, it is imperative to select an optimal O3 exposure time to achieve the desired functional outcome, such as malting, animal feeding, and human consumption. Abstract Ozone (O3) is a potential fumigant to control pests in stored grain since it can safely and rapidly auto-decompose without leaving residues. In this study, the efficacy of O3 on all life stages of Rhyzopertha dominica (Fabricius) and Tribolium castaneum (Herbst) in barley and the physiological effects on barley and its quality were investigated. Complete control of all life stages of pests was obtained at 700 ppm for 1440 min of ozone exposure without negatively impacting the contents of soluble protein, moisture content, seed colour, hardness, and the weight of thousand barley seeds. The eggs and pupae of these two insects were the more tolerant stages than their larvae and adults. Prolonged exposure times (40 to 1440 min) and mortality assessment intervals (1, 2, and 7 days) increased O3 efficacy due to the reaction characteristics and delayed toxicity. Aging barley seeds appeared to be more sensitive to prolonged ozone duration than new seeds. A total of 20 and 40 min could promote germination rate, and longer O3 exposure (1440 min) was unfavourable for germination and seedling growth. Thus, it is imperative to select an optimal O3 exposure time to transfer ozone into quality contributors of final products and achieve the desired functional outcomes.
Collapse
|
4
|
Stejskal V, Vendl T, Aulicky R, Athanassiou C. Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control. INSECTS 2021; 12:590. [PMID: 34209742 PMCID: PMC8305526 DOI: 10.3390/insects12070590] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
The selective application of insecticides is one of the cornerstones of integrated pest management (IPM) and management strategies for pest resistance to insecticides. The present work provides a comprehensive overview of the traditional and new methods for the application of gas, liquid, gel, and solid physical insecticide formulations to control stored-product and food industry urban pests from the taxa Acarina, Blattodea, Coleoptera, Diptera, Hymenoptera, Lepidoptera, Psocoptera, and Zygentoma. Various definitions and concepts historically and currently used for various pesticide application formulations and methods are also described. This review demonstrates that new technological advances have sparked renewed research interest in the optimization of conventional methods such as insecticide aerosols, sprays, fumigants, and inert gases. Insect growth regulators/disruptors (IGRs/IGDs) are increasingly employed in baits, aerosols, residual treatments, and as spray-residual protectants for long-term stored-grain protection. Insecticide-impregnated hypoxic multilayer bags have been proven to be one of the most promising low-cost and safe methods for hermetic grain storage in developing countries. Insecticide-impregnated netting and food baits were originally developed for the control of urban/medical pests and have been recognized as an innovative technology for the protection of stored commodities. New biodegradable acaricide gel coatings and nets have been suggested for the protection of ham meat. Tablets and satchels represent a new approach for the application of botanicals. Many emerging technologies can be found in the form of impregnated protective packaging (insect growth regulators/disruptors (IGRs/IGDs), natural repellents), pheromone-based attracticides, electrostatic dust or sprays, nanoparticles, edible artificial sweeteners, hydrogels, inert baits with synthetic attractants, biodegradable encapsulations of active ingredients, and cyanogenic protective grain coatings. Smart pest control technologies based on RNA-based gene silencing compounds incorporated into food baits stand at the forefront of current strategic research. Inert gases and dust (diatomaceous earth) are positive examples of alternatives to synthetic pesticide products, for which methods of application and their integration with other methods have been proposed and implemented in practice. Although many promising laboratory studies have been conducted on the biological activity of natural botanical insecticides, published studies demonstrating their effective industrial field usage in grain stores and food production facilities are scarce. This review shows that the current problems associated with the application of some natural botanical insecticides (e.g., sorption, stability, field efficacy, and smell) to some extent echo problems that were frequently encountered and addressed almost 100 years ago during the transition from ancient to modern classical chemical pest control methods.
Collapse
Affiliation(s)
- Vaclav Stejskal
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic; (T.V.); (R.A.)
| | - Tomas Vendl
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic; (T.V.); (R.A.)
| | - Radek Aulicky
- Crop Research Institute, Drnovska 507/73, 16106 Prague, Czech Republic; (T.V.); (R.A.)
| | - Christos Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Nea Ionia, Greece;
| |
Collapse
|
5
|
Saed B, Ziaee M, Kiasat AR, Jafari nasab M. Preparation of nanosilica from sugarcane bagasse ash for enhanced insecticidal activity of diatomaceous earth against two stored-products insect pests. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1903038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Basneh Saed
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masumeh Ziaee
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Reza Kiasat
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mina Jafari nasab
- Chemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
6
|
Faraone N, Hillier NK. Preliminary Evaluation of a Granite Rock Dust Product for Pest Herbivore Management in Field Conditions. INSECTS 2020; 11:E877. [PMID: 33322278 PMCID: PMC7763347 DOI: 10.3390/insects11120877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/03/2022]
Abstract
The effects of granite rock dust in dry and aqueous formulations were evaluated under field conditions for control of insect pests in different crop systems and ornamental plants. We tested efficacy of crop protection following foliar applications on lily, squash, and cabbage plants by evaluating subsequent pest damage, overall plant health, and quantity of crops produced over one season. Lily plants treated with dry and aqueous formulations of rock dust were subject to lower herbivore damage (>1% and 11% herbivory damage, respectively) when compared to the controls (30% herbivory damage). Treatment on cabbage was less effective to protect plants against herbivory damage, and no statistically significant differences were reported within treatments. The foliar applications (dry and aqueous formulations) had positive impacts on growth of squash fruit resulting in a 2.5-fold increase in size relative to the control squash fruit. These results support the potential field application of granite dust to protect ornamental plants against herbivory attack, and reveal an alternative positive effect of the silica-based product on plant growth and development.
Collapse
Affiliation(s)
- Nicoletta Faraone
- Chemistry Department, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - N. Kirk Hillier
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada;
| |
Collapse
|
7
|
Paponja I, Rozman V, Liška A. Natural Formulation Based on Diatomaceous Earth and Botanicals against Stored Product Insects. INSECTS 2020; 11:insects11090613. [PMID: 32911831 PMCID: PMC7565902 DOI: 10.3390/insects11090613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/01/2022]
Abstract
Simple Summary Stored product insects play a major role in postharvest loss. In order to minimize negative effect of conventional insecticides, diatomaceous earth (DE) is one of the alternative solutions for insect control. Despite favorable effect for the environment and human health, DE has some negative side effects on the treated commodity. In order to overcome the limitations of DEs, the aim of this study was to develop natural formulation which would improve the activity of DE. Formulation (labeled as N Form) based on DE enhanced with botanicals and silica gel was tested against three major stored product insect species in wheat and barley under controlled conditions. N Form showed higher efficacy than DE, especially in barley, inducing higher mortality of all three insect species. This study provides new information about the improvement of DE effectiveness thus representing a contribution to further development of natural insecticides as a part of integrated pest management. Abstract Diatomaceous earth (DE) has long been known as a potential protectant for stored cereals against various stored product insects. Despite favorable effect for the environment and human health, DE has some negative side effects on the treated commodity. In order to minimize negative response and to improve its efficacy, this paper represents a study of developed natural formulation based on DE SilicoSec® enhanced with botanicals (essential oil lavender, corn oil, and bay leaves dust) and silica gel. The activity of formulation (labeled as N Form) was tested against Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst) in seed wheat and barley under controlled conditions. As a reference comparative value, DE SilicoSec® was used. N Form showed higher efficacy than DE, especially in barley at the lowest concentration, inducing higher mortality of all three insect species. The highest average progeny inhibition was recorded in R. dominica population both in seed wheat and barley with 94.9% and 96.3% of inhibition, respectively, followed with S. oryzae and T. castaneum inhibition of 90.6% and 86.1%, respectively, in wheat and 94.9% and 89.7%, respectively, in barley. Results indicate that the developed natural formulation N Form enhanced the activity of DE SilicoSec® using lower amount of DE dust and that it could be successfully implemented for storage of cereals as alternatives to chemical pesticides for stored product insect control.
Collapse
Affiliation(s)
- Ivan Paponja
- Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Vlatka Rozman
- Department for Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Anita Liška
- Department for Phytomedicine, Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Correspondence:
| |
Collapse
|