1
|
Vanderplow AM, Dodis GE, Rhee Y, Cikowski JJ, Gonzalez S, Smith ML, Gogliotti RG. Site-blocking antisense oligonucleotides as a mechanism to fine-tune MeCP2 expression. RNA (NEW YORK, N.Y.) 2024; 30:1554-1571. [PMID: 39379106 PMCID: PMC11571808 DOI: 10.1261/rna.080220.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Despite its severe phenotypes, studies in mouse models suggest that restoring MeCP2 levels can reverse RTT symptomology. Nevertheless, traditional gene therapy approaches are hindered by MeCP2's narrow therapeutic window, complicating the safe delivery of viral constructs without overshooting the threshold for toxicity. The 3' untranslated region (3' UTR) plays a key role in gene regulation, where factors like miRNAs bind to pre-mRNA and fine-tune expression. Given that each miRNA's contribution is modest, blocking miRNA binding may represent a potential therapeutic strategy for diseases with high dosage sensitivity, like RTT. Here, we present a series of site-blocking antisense oligonucleotides (sbASOs) designed to outcompete repressive miRNA binding at the MECP2 3' UTR. This strategy aims to increase MeCP2 levels in patients with missense or late-truncating mutations, where the hypomorphic nature of the protein can be offset by enhanced abundance. Our results demonstrate that sbASOs can elevate MeCP2 levels in a dose-dependent manner in SH-SY5Y and patient fibroblast cell lines, plateauing at levels projected to be safe. Confirming in vivo functionality, sbASO administration in wild-type mice led to significant Mecp2 upregulation and the emergence of phenotypes associated with Mecp2 overexpression. In a T158M neural stem cell model of RTT, sbASO treatment significantly increased MeCP2 expression and levels of the downstream effector protein brain-derived neurotrophic factor (BDNF). These findings highlight the potential of sbASO-based therapies for MeCP2-related disorders and advocate for their continued development.
Collapse
Affiliation(s)
- Amanda M Vanderplow
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Grace E Dodis
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Yewon Rhee
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Jakub J Cikowski
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sonia Gonzalez
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Mackenzie L Smith
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| | - Rocco G Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, Illinois 60153, USA
| |
Collapse
|
2
|
Farina FM, Weber C, Santovito D. The emerging landscape of non-conventional RNA functions in atherosclerosis. Atherosclerosis 2023; 374:74-86. [PMID: 36725418 DOI: 10.1016/j.atherosclerosis.2023.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Most of the human genome is transcribed into non-coding RNAs (ncRNAs), which encompass a heterogeneous family of transcripts including microRNAs (miRNAs), long ncRNAs (lncRNAs), circular RNAs (circRNAs), and others. Although the detailed modes of action of some classes are not fully elucidated, the common notion is that ncRNAs contribute to sculpting gene expression of eukaryotic cells at multiple levels. These range from the regulation of chromatin remodeling and transcriptional activity to post-transcriptional regulation of messenger RNA splicing, stability, and decay. Many of these functions ultimately govern the expression of coding and non-coding genes to affect diverse physiological and pathological mechanisms in vascular biology and beyond. As such, different classes of ncRNAs emerged as crucial regulators of vascular integrity as well as active players in the pathophysiology of atherosclerosis from the early stages of endothelial dysfunction to the clinically relevant complications. However, research in recent years revealed unexpected findings such as small ncRNAs being able to biophysically regulate protein function, the glycosylation of ncRNAs to be exposed on the cell surface, the release of ncRNAs in the extracellular space to act as ligands of receptors, and even the ability of non-coding portion of messenger RNAs to mediate structural functions. This evidence expanded the functional repertoire of ncRNAs far beyond gene regulation and highlighted an additional layer of biological control of cell function. In this Review, we will discuss these emerging aspects of ncRNA biology, highlight the implications for the mechanisms of vascular biology and atherosclerosis, and discuss possible translational implications.
Collapse
Affiliation(s)
- Floriana Maria Farina
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximillians-Universität (LMU), Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| |
Collapse
|
3
|
Pathania AS. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel) 2023; 15:2833. [PMID: 37345170 DOI: 10.3390/cancers15102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Striatal ZBTB16 Is Associated With Cognitive Deficits in Alzheimer Disease Mice. Int Neurourol J 2022; 26:S106-116. [PMID: 36503213 PMCID: PMC9767687 DOI: 10.5213/inj.2244254.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE In Alzheimer disease (AD), brain regions such as the cortex and the hippocampus show abundant amyloid load which correlates with cognitive function decline. Prior to the significant development of AD pathophysiology, patients report the manifestation of neuropsychiatric symptoms, indicating a functional interplay between basal ganglia structures and hippocampal regions. Zinc finger and BTB domain-containing protein 16 (ZBTB16) is a transcription factor that controls the expression of downstream genes and the involvement of ZBTB16 in the striatum undergoing pathological aging in AD and the resulting behavioral phenotypes has not yet been explored. METHODS To study molecular alterations in AD pathogenesis, we analyzed the brain from amyloid precursor protein (APP)/ presenilin 1 (PS1) transgenic mice. The molecular changes in the striatal region of the brain were analyzed via the immunoblotting, and the quantitative RNA sequencing. The cognitive impairments of APP/PS1 mice were assessed via 3 behavioral tests: 3-chamber test, Y-maze test, and noble object recognition test. And multielectrode array experiments for the analysis of the neuronal activity of the striatum in APP/PS1 mice was performed. RESULTS We found that the alteration in ZBTB16 levels that occurred in the early ages of the pathologically aging striatum coalesces with the disruption of transcriptional dysregulation while causing social memory deficits, anxiety-like behavior. The early ZBTB16 knockdown treatment in the striatum of APP/PS1 mice rescued cognition that continued into later age. CONCLUSION This study demonstrates that perturbation of transcriptional regulation of ZBTB16 during pathological aging may influence cognitive impairments and reveals a potent approach to targeting the transcriptional regulation of the striatum for the treatment of AD.
Collapse
|
5
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
6
|
Neier K, Grant TE, Palmer RL, Chappell D, Hakam SM, Yasui KM, Rolston M, Settles ML, Hunter SS, Madany A, Ashwood P, Durbin-Johnson B, LaSalle JM, Yasui DH. Sex disparate gut microbiome and metabolome perturbations precede disease progression in a mouse model of Rett syndrome. Commun Biol 2021; 4:1408. [PMID: 34916612 PMCID: PMC8677842 DOI: 10.1038/s42003-021-02915-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022] Open
Abstract
Rett syndrome (RTT) is a regressive neurodevelopmental disorder in girls, characterized by multisystem complications including gut dysbiosis and altered metabolism. While RTT is known to be caused by mutations in the X-linked gene MECP2, the intermediate molecular pathways of progressive disease phenotypes are unknown. Mecp2 deficient rodents used to model RTT pathophysiology in most prior studies have been male. Thus, we utilized a patient-relevant mouse model of RTT to longitudinally profile the gut microbiome and metabolome across disease progression in both sexes. Fecal metabolites were altered in Mecp2e1 mutant females before onset of neuromotor phenotypes and correlated with lipid deficiencies in brain, results not observed in males. Females also displayed altered gut microbial communities and an inflammatory profile that were more consistent with RTT patients than males. These findings identify new molecular pathways of RTT disease progression and demonstrate the relevance of further study in female Mecp2 animal models.
Collapse
Affiliation(s)
- Kari Neier
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | - Tianna E Grant
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | - Rebecca L Palmer
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | - Demario Chappell
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | - Sophia M Hakam
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | | | - Matt Rolston
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | | | | | - Abdullah Madany
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | - Paul Ashwood
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| | - Blythe Durbin-Johnson
- UC Davis Genome Center, Davis, CA, USA
- UC Davis School of Medicine, Department of Public Health Sciences, Davis, CA, USA
| | - Janine M LaSalle
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA.
- UC Davis Genome Center, Davis, CA, USA.
| | - Dag H Yasui
- UC Davis School of Medicine, Department of Medical Microbiology and Immunology, Genome Center, MIND Institute, Davis, CA, USA
| |
Collapse
|
7
|
Wong X, Cutler JA, Hoskins VE, Gordon M, Madugundu AK, Pandey A, Reddy KL. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains. Life Sci Alliance 2021; 4:e202000774. [PMID: 33758005 PMCID: PMC8008952 DOI: 10.26508/lsa.202000774] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
The nuclear lamina is a proteinaceous network of filaments that provide both structural and gene regulatory functions by tethering proteins and large domains of DNA, the so-called lamina-associated domains (LADs), to the periphery of the nucleus. LADs are a large fraction of the mammalian genome that are repressed, in part, by their association to the nuclear periphery. The genesis and maintenance of LADs is poorly understood as are the proteins that participate in these functions. In an effort to identify proteins that reside at the nuclear periphery and potentially interact with LADs, we have taken a two-pronged approach. First, we have undertaken an interactome analysis of the inner nuclear membrane bound LAP2β to further characterize the nuclear lamina proteome. To accomplish this, we have leveraged the BioID system, which previously has been successfully used to characterize the nuclear lamina proteome. Second, we have established a system to identify proteins that bind to LADs by developing a chromatin-directed BioID system. We combined the BioID system with the m6A-tracer system which binds to LADs in live cells to identify both LAD proximal and nuclear lamina proteins. In combining these datasets, we have further characterized the protein network at the nuclear lamina, identified putative LAD proximal proteins and found several proteins that appear to interface with both micro-proteomes. Importantly, several proteins essential for LAD function, including heterochromatin regulating proteins related to H3K9 methylation, were identified in this study.
Collapse
Affiliation(s)
- Xianrong Wong
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Laboratory of Developmental and Regenerative Biology, Institute of Medical Biology, Agency for Science, Technology and Research (A∗STAR), Immunos, Singapore
| | - Jevon A Cutler
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria E Hoskins
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Molly Gordon
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anil K Madugundu
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Akhilesh Pandey
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHNS), Bangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
- Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen L Reddy
- Department of Biological Chemistry, Johns Hopkins University of Medicine, Baltimore, MD, USA
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Sharifi O, Yasui DH. The Molecular Functions of MeCP2 in Rett Syndrome Pathology. Front Genet 2021; 12:624290. [PMID: 33968128 PMCID: PMC8102816 DOI: 10.3389/fgene.2021.624290] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
MeCP2 protein, encoded by the MECP2 gene, binds to DNA and affects transcription. Outside of this activity the true range of MeCP2 function is still not entirely clear. As MECP2 gene mutations cause the neurodevelopmental disorder Rett syndrome in 1 in 10,000 female births, much of what is known about the biologic function of MeCP2 comes from studying human cell culture models and rodent models with Mecp2 gene mutations. In this review, the full scope of MeCP2 research available in the NIH Pubmed (https://pubmed.ncbi.nlm.nih.gov/) data base to date is considered. While not all original research can be mentioned due to space limitations, the main aspects of MeCP2 and Rett syndrome research are discussed while highlighting the work of individual researchers and research groups. First, the primary functions of MeCP2 relevant to Rett syndrome are summarized and explored. Second, the conflicting evidence and controversies surrounding emerging aspects of MeCP2 biology are examined. Next, the most obvious gaps in MeCP2 research studies are noted. Finally, the most recent discoveries in MeCP2 and Rett syndrome research are explored with a focus on the potential and pitfalls of novel treatments and therapies.
Collapse
Affiliation(s)
- Osman Sharifi
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| | - Dag H Yasui
- LaSalle Laboratory, Department of Medical Microbiology and Immunology, UC Davis School of Medicine, Davis, CA, United States
| |
Collapse
|
9
|
Nuclear functions of microRNAs relevant to the cardiovascular system. Transl Res 2021; 230:151-163. [PMID: 33186782 DOI: 10.1016/j.trsl.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
A fraction of the transcriptome is translated into proteins. The rest is classified as non-protein coding RNA (Ribonucleic Acid) but has gained increased attention as functional and regulatory group of transcripts. The gene regulatory role of non-coding RNAs (ncRNAs) has now been widely accepted in diverse biological processes in both physiology and disease. MicroRNAs fall into this latter group and are widely known for their diverse post-transcriptional regulatory role. MicroRNA sequences are embedded in the long ncRNAs, known as primary microRNAs, are processed into precursor microRNAs and are typically transported out of the nucleus for maturation and loading into a protein complex forming RNA-induced silencing complex (RISC) that either drives the degradation of messenger RNA (mRNA) or blocks its translation. A new phenomenon is emerging where microRNAs have active roles within the nucleus. The presence of RISC components including microRNAs in the nucleus supports this notion. They may integrate with chromatin modifiers, microprocessing machinery and mRNA stabilizing transcripts to play a multifunctional role in the nucleus. Although a limited number of studies appreciate this novel activity of microRNAs relevant to the cardiovascular system, they provide proof-of-concept that requires consideration while targeting miRNAs with therapeutic potential.
Collapse
|
10
|
Good KV, Vincent JB, Ausió J. MeCP2: The Genetic Driver of Rett Syndrome Epigenetics. Front Genet 2021; 12:620859. [PMID: 33552148 PMCID: PMC7859524 DOI: 10.3389/fgene.2021.620859] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Mutations in methyl CpG binding protein 2 (MeCP2) are the major cause of Rett syndrome (RTT), a rare neurodevelopmental disorder with a notable period of developmental regression following apparently normal initial development. Such MeCP2 alterations often result in changes to DNA binding and chromatin clustering ability, and in the stability of this protein. Among other functions, MeCP2 binds to methylated genomic DNA, which represents an important epigenetic mark with broad physiological implications, including neuronal development. In this review, we will summarize the genetic foundations behind RTT, and the variable degrees of protein stability exhibited by MeCP2 and its mutated versions. Also, past and emerging relationships that MeCP2 has with mRNA splicing, miRNA processing, and other non-coding RNAs (ncRNA) will be explored, and we suggest that these molecules could be missing links in understanding the epigenetic consequences incurred from genetic ablation of this important chromatin modifier. Importantly, although MeCP2 is highly expressed in the brain, where it has been most extensively studied, the role of this protein and its alterations in other tissues cannot be ignored and will also be discussed. Finally, the additional complexity to RTT pathology introduced by structural and functional implications of the two MeCP2 isoforms (MeCP2-E1 and MeCP2-E2) will be described. Epigenetic therapeutics are gaining clinical popularity, yet treatment for Rett syndrome is more complicated than would be anticipated for a purely epigenetic disorder, which should be taken into account in future clinical contexts.
Collapse
Affiliation(s)
- Katrina V. Good
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
11
|
Sbardella D, Tundo GR, Cunsolo V, Grasso G, Cascella R, Caputo V, Santoro AM, Milardi D, Pecorelli A, Ciaccio C, Di Pierro D, Leoncini S, Campagnolo L, Pironi V, Oddone F, Manni P, Foti S, Giardina E, De Felice C, Hayek J, Curatolo P, Galasso C, Valacchi G, Coletta M, Graziani G, Marini S. Defective proteasome biogenesis into skin fibroblasts isolated from Rett syndrome subjects with MeCP2 non-sense mutations. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165793. [PMID: 32275946 DOI: 10.1016/j.bbadis.2020.165793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/06/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023]
Abstract
Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression. A defective proteasome biogenesis into two skin primary fibroblasts isolated from RTT subjects harbouring non-sense (early-truncating) MeCP2 mutations (i.e., R190fs and R255X) is herewith reported. Proteasome is the proteolytic machinery of Ubiquitin Proteasome System (UPS), a pathway of overwhelming relevance for post-mitotic cells metabolism. Molecular, transcription and proteomic analyses indicate that MeCP2 mutations down-regulate the expression of one proteasome subunit, α7, and of two chaperones, PAC1 and PAC2, which bind each other in the earliest step of proteasome biogenesis. Furthermore, this molecular alteration recapitulates in neuron-like SH-SY5Y cells upon silencing of MeCP2 expression, envisaging a general significance of this transcription regulator in proteasome biogenesis.
Collapse
Affiliation(s)
- Diego Sbardella
- IRCSS-Fondazione GB Bietti, Via Livenza, 3, 00198 Rome, Italy
| | - Grazia Raffaella Tundo
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Raffaella Cascella
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | | | - Danilo Milardi
- Institute of Crystallography, National Research Council, Catania, Italy
| | - Alessandra Pecorelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Chiara Ciaccio
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Donato Di Pierro
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Virginia Pironi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | | | - Priscilla Manni
- Ophthalmology Unit, St. Andrea Hospital, Faculty of Medicine and Psychology, NESMOS Department, University of Rome "Sapienza", Rome, Italy
| | - Salvatore Foti
- Department of Chemistry, University of Catania, Catania, Italy
| | - Emiliano Giardina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy; Molecular Genetics Laboratory UILDM, Santa Lucia Foundation, Rome, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Joussef Hayek
- Neonatal Intensive Care Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy; "Isola di Bau", Multi-Specialist Centre, Certaldo (Florence), Italy
| | - Paolo Curatolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Cinzia Galasso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Massimiliano Coletta
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Dept of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
12
|
Keidar L, Gerlitz G, Kshirsagar A, Tsoory M, Olender T, Wang X, Yang Y, Chen YS, Yang YG, Voineagu I, Reiner O. Interplay of LIS1 and MeCP2: Interactions and Implications With the Neurodevelopmental Disorders Lissencephaly and Rett Syndrome. Front Cell Neurosci 2019; 13:370. [PMID: 31474834 PMCID: PMC6703185 DOI: 10.3389/fncel.2019.00370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/30/2019] [Indexed: 12/30/2022] Open
Abstract
LIS1 is the main causative gene for lissencephaly, while MeCP2 is the main causative gene for Rett syndrome, both of which are neurodevelopmental diseases. Here we report nuclear functions for LIS1 and identify previously unrecognized physical and genetic interactions between the products of these two genes in the cell nucleus, that has implications on MeCP2 organization, neuronal gene expression and mouse behavior. Reduced LIS1 levels affect the association of MeCP2 with chromatin. Transcriptome analysis of primary cortical neurons derived from wild type, Lis1±, MeCP2−/y, or double mutants mice revealed a large overlap in the differentially expressed (DE) genes between the various mutants. Overall, our findings provide insights on molecular mechanisms involved in the neurodevelopmental disorders lissencephaly and Rett syndrome caused by dysfunction of LIS1 and MeCP2, respectively.
Collapse
Affiliation(s)
- Liraz Keidar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gabi Gerlitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Xing Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ying Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yu-Sheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yun-Gui Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
K N H, Okabe J, Mathiyalagan P, Khan AW, Jadaan SA, Sarila G, Ziemann M, Khurana I, Maxwell SS, Du XJ, El-Osta A. Sex-Based Mhrt Methylation Chromatinizes MeCP2 in the Heart. iScience 2019; 17:288-301. [PMID: 31323475 PMCID: PMC6639684 DOI: 10.1016/j.isci.2019.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/13/2019] [Accepted: 06/20/2019] [Indexed: 01/15/2023] Open
Abstract
In the heart, primary microRNA-208b (pri-miR-208b) and Myheart (Mhrt) are long non-coding RNAs (lncRNAs) encoded by the cardiac myosin heavy chain genes. Although preclinical studies have shown that lncRNAs regulate gene expression and are protective for pathological hypertrophy, the mechanism underlying sex-based differences remains poorly understood. In this study, we examined DNA- and RNA-methylation-dependent regulation of pri-miR-208b and Mhrt. Expression of pri-miR-208b is elevated in the left ventricle of the female heart. Despite indistinguishable DNA methylation between sexes, the interaction of MeCP2 on chromatin is subject to RNase digestion, highlighting that affinity of the methyl-CG reader is broader than previously thought. A specialized procedure to isolate RNA from soluble cardiac chromatin emphasizes sex-based affinity of an MeCP2 co-repressor complex with Rest and Hdac2. Sex-specific Mhrt methylation chromatinizes MeCP2 at the pri-miR-208b promoter and extends the functional relevance of default transcriptional suppression in the heart. Mechanisms underlying sex-based gene expression are poorly understood Expression of primary miR-208b is independent of DNA methylation in the heart Sex-specific methylation of the long non-coding RNA Mhrt distinguishes MeCP2 Procedures assessing soluble chromatin emphasize RNA-dependent affinities
Collapse
Affiliation(s)
- Harikrishnan K N
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jun Okabe
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Prabhu Mathiyalagan
- Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Abdul Waheed Khan
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sameer A Jadaan
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gulcan Sarila
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Mark Ziemann
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Ishant Khurana
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Scott S Maxwell
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Central Clinical School, Faculty of Medicine, Monash University, Melbourne, VIC 3004, Australia; Baker Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, VIC 3004, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; Hong Kong Institute of Diabetes and Obesity, Prince of Wales Hospital, The Chinese University of Hong Kong, 3/F Lui Che Woo Clinical Sciences Building, 30-32 Ngan Shing Street, Sha Tin, Hong Kong SAR; University College Copenhagen, Faculty of Health, Department of Technology, Biomedical Laboratory Science, Copenhagen, Denmark.
| |
Collapse
|
14
|
Zhou Y, Dong F, Mao Y. Control of CNS functions by RNA-binding proteins in neurological diseases. ACTA ACUST UNITED AC 2018; 4:301-313. [PMID: 30410853 DOI: 10.1007/s40495-018-0140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review This review summarizes recent studies on the molecular mechanisms of RNA binding proteins (RBPs) that control neurological functions and pathogenesis in various neurodevelopmental and neurodegenerative diseases, including autism spectrum disorders, schizophrenia, Alzheimer's disease, amyotrophic lateral sclerosis, frontotemporal dementia, and spinocerebellar ataxia. Recent Findings RBPs are critical players in gene expression that regulate every step of posttranscriptional modifications. Recent genome-wide approaches revealed that many proteins associate with RNA, but do not contain any known RNA binding motifs. Additionally, many causal and risk genes of neurodevelopmental and neurodegenerative diseases are RBPs. Development of high-throughput sequencing methods has mapped out the fingerprints of RBPs on transcripts and provides unprecedented potential to discover new mechanisms of neurological diseases. Insights into how RBPs modulate neural development are important for designing effective therapies for numerous neurodevelopmental and neurodegenerative diseases. Summary RBPs have diverse mechanisms for modulating RNA processing and, thereby, controlling neurogenesis. Understanding the role of disease-associated RBPs in neurogenesis is vital for developing novel treatments for neurological diseases.
Collapse
Affiliation(s)
- Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|