1
|
Zheng Z, Chen X, Zhang Y, Ren F, Ma Y. MEK/ERK and PI3K/AKT pathway inhibitors affect the transformation of myelodysplastic syndrome into acute myeloid leukemia via H3K27me3 methylases and de‑methylases. Int J Oncol 2023; 63:140. [PMID: 37921060 PMCID: PMC10631768 DOI: 10.3892/ijo.2023.5588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/28/2023] [Indexed: 11/04/2023] Open
Abstract
The transformation of myelodysplastic syndrome (MDS) into acute myeloid leukemia (AML) poses a significant clinical challenge. The trimethylation of H3 on lysine 27 (H3K27me3) methylase and de‑methylase pathway is involved in the regulation of MDS progression. The present study investigated the functional mechanisms of the MEK/ERK and PI3K/AKT pathways in the MDS‑to‑AML transformation. MDS‑AML mouse and SKM‑1 cell models were first established and this was followed by treatment with the MEK/ERK pathway inhibitor, U0126, the PI3K/AKT pathway inhibitor, Ly294002, or their combination. H3K27me3 methylase, enhancer of zeste homolog (EZH)1, EZH2, demethylase Jumonji domain‑containing protein‑3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) and H3K27me3 protein levels were determined using western blot analysis. Cell viability, cycle distribution and proliferation were assessed using CCK‑8, flow cytometry, EdU and colony formation assays. The ERK and AKT phosphorylation levels in clinical samples and established models were determined, and SKM‑1 cell behaviors were assessed. The levels of H3K27me3 methylases and de‑methylases and distal‑less homeobox 5 (DLX5) were measured. The results revealed that the ERK and AKT phosphorylation levels were elevated in patients with MDS and MDS‑AML, and in mouse models. Treatment with U0126, a MEK/ERK pathway inhibitor, and Ly294002, a PI3K/AKT pathway inhibitor, effectively suppressed ERK and AKT phosphorylation in mice with MDS‑AML. It was observed that mice with MDS treated with U0126/Ly294002 exhibited reduced transformation to AML, delayed disease transformation and increased survival rates. Treatment of the SKM‑1 cells with U0126/Ly294002 led to a decrease in cell viability and proliferation, and to an increase in cell cycle arrest by suppressing ERK/PI3K phosphorylation. Moreover, treatment with U0126/Ly294002 downregulated EZH2/EZH1 expression, and upregulated JMJD3/UTX expression. The effects of U0126/Ly294002 were nullified when EZH2/EZH1 was overexpressed or when JMJD3/UTX was inhibited in the SKM‑1 cells. Treatment with U0126/Ly294002 also resulted in a decreased H3K27me3 protein level and H3K27me3 level in the DLX5 promoter region, leading to an increased DLX5 expression. Overall, the findings of the present study suggest that U0126/Ly294002 participates in MDS‑AML transformation by modulating the levels of H3K27me3 methylases and de‑methylases, and regulating DLX5 transcription and expression.
Collapse
Affiliation(s)
- Zhuanzhen Zheng
- Department of Hematopathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiuhua Chen
- Department of Hematopathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yaofang Zhang
- Department of Hematopathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Fanggang Ren
- Department of Hematopathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanping Ma
- Department of Hematopathology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
2
|
Talarmain L, Clarke MA, Shorthouse D, Cabrera-Cosme L, Kent DG, Fisher J, Hall BA. HOXA9 has the hallmarks of a biological switch with implications in blood cancers. Nat Commun 2022; 13:5829. [PMID: 36192425 PMCID: PMC9530117 DOI: 10.1038/s41467-022-33189-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Blood malignancies arise from the dysregulation of haematopoiesis. The type of blood cell and the specific order of oncogenic events initiating abnormal growth ultimately determine the cancer subtype and subsequent clinical outcome. HOXA9 plays an important role in acute myeloid leukaemia (AML) prognosis by promoting blood cell expansion and altering differentiation; however, the function of HOXA9 in other blood malignancies is still unclear. Here, we highlight the biological switch and prognosis marker properties of HOXA9 in AML and chronic myeloproliferative neoplasms (MPN). First, we establish the ability of HOXA9 to stratify AML patients with distinct cellular and clinical outcomes. Then, through the use of a computational network model of MPN, we show that the self-activation of HOXA9 and its relationship to JAK2 and TET2 can explain the branching progression of JAK2/TET2 mutant MPN patients towards divergent clinical characteristics. Finally, we predict a connection between the RUNX1 and MYB genes and a suppressive role for the NOTCH pathway in MPN diseases.
Collapse
Affiliation(s)
- Laure Talarmain
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Matthew A Clarke
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - David Shorthouse
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Lilia Cabrera-Cosme
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, United Kingdom
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, United Kingdom
| | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
3
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
4
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
5
|
Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, Wang W. KDM6 Demethylases and Their Roles in Human Cancers. Front Oncol 2021; 11:779918. [PMID: 34950587 PMCID: PMC8688854 DOI: 10.3389/fonc.2021.779918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer therapy is moving beyond traditional chemotherapy to include epigenetic approaches. KDM6 demethylases are dynamic regulation of gene expression by histone demethylation in response to diverse stimuli, and thus their dysregulation has been observed in various cancers. In this review, we first briefly introduce structural features of KDM6 subfamily, and then discuss the regulation of KDM6, which involves the coordinated control between cellular metabolism (intrinsic regulators) and tumor microenvironment (extrinsic stimuli). We further describe the aberrant functions of KDM6 in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose potential therapy of KDM6 enzymes based on their structural features, epigenetics, and immunomodulatory mechanisms, providing novel insights for prevention and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Shuting Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Jiahong Fu
- Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Lagunas-Rangel FA. KDM6B (JMJD3) and its dual role in cancer. Biochimie 2021; 184:63-71. [PMID: 33581195 DOI: 10.1016/j.biochi.2021.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Epigenetic modifications play a fundamental role in the regulation of gene expression and cell fate. During the development of cancer, epigenetic modifications appear that favor cell proliferation and migration, but at the same time prevent differentiation and apoptosis, among other processes. KDM6B is a histone demethylase that specifically removes methyl groups from H3K27me3, thus allowing re-expression of its target genes. It is currently known that KDM6B can act as both a tumor suppressor and an oncogene depending on the cellular context. Therefore, in this work we summarize the current knowledge of the role that KDM6B plays in different oncological contexts, and we try to orient it towards its clinical application.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Av. Instituto Politécnico Nacional No. 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360, Mexico City, Mexico.
| |
Collapse
|
7
|
Gao H, He X, Li Q, Wang Y, Tian Y, Chen X, Wang J, Guo Y, Wang W, Li X. Genome-wide DNA methylome analysis reveals methylation subtypes with different clinical outcomes for acute myeloid leukemia patients. Cancer Med 2020; 9:6296-6305. [PMID: 32628355 PMCID: PMC7476826 DOI: 10.1002/cam4.3291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/11/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022] Open
Abstract
Leukemia is the second common blood cancer after lymphoma, and its incidence rate has an increasing trend in recent years. Acute myeloid leukemia (AML) is one of the prevalent forms of leukemia. Although previous studies have investigated the methylation profile for AML patients, the AML methylation subtypes based on the genome‐wide methylome are still unclear. In the present study, we identified three methylation subtypes for AML samples based on the methylation profiles at CGI, CGI shore, CGI shelf, and opensea genomic contexts. Analyzing the molecular characteristics and clinical factors of the three subtypes revealed different methylation patterns and clinical outcomes between them. Further analysis revealed subtype dependent marker genes and their promoter CpG sites with regulatory function. Finally, we found that combining the AML patient age and methylation pattern brought better clinical outcome classification. In conclusion, we identified AML methylation subtypes and their marker genes, these results may help to excavate potential targets for clinical therapy and the development of precision medicine for AML patients.
Collapse
Affiliation(s)
- Haiyan Gao
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xin He
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Qiang Li
- Department of Paediatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ying Wang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yaoyao Tian
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xi Chen
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jinghua Wang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yan Guo
- Assessment Admittance Section, Heilongjiang Hospital Service Management Evaluation Center, Harbin, China
| | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaoyun Li
- Department of Hematology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Illiano M, Conte M, Salzillo A, Ragone A, Spina A, Nebbioso A, Altucci L, Sapio L, Naviglio S. The KDM Inhibitor GSKJ4 Triggers CREB Downregulation via a Protein Kinase A and Proteasome-Dependent Mechanism in Human Acute Myeloid Leukemia Cells. Front Oncol 2020; 10:799. [PMID: 32582541 PMCID: PMC7289982 DOI: 10.3389/fonc.2020.00799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/23/2020] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is a progressive hematopoietic-derived cancer arising from stepwise genetic mutations of the myeloid lineage. cAMP response element-binding protein (CREB) is a nuclear transcription factor, which plays a key role in the multistep process of leukemogenesis, thus emerging as an attractive potential drug target for AML treatment. Since epigenetic dysregulations, such as DNA methylation, histone modifications, as well as chromatin remodeling, are a frequent occurrence in AML, an increasing and selective number of epi-drugs are emerging as encouraging therapeutic agents. Here, we demonstrate that the histone lysine demethylases (KDMs) JMJD3/UTX inhibitor GSKJ4 results in both proliferation decrease and CREB protein downregulation in AML cells. We found that GSKJ4 clearly decreases CREB protein, but not CREB mRNA levels. By cycloheximide assay, we provide evidence that GSKJ4 reduces CREB protein stability; moreover, proteasome inhibition largely counteracts the GSKJ4-induced CREB downregulation. Very interestingly, a rapid CREB phosphorylation at the Ser133 residue precedes CREB protein decrease in response to GSKJ4 treatment. In addition, protein kinase A (PKA) inhibition, but not extracellular signal-regulated kinase (ERK)1/2 inhibition, almost completely prevents both GSKJ4-induced p-Ser133-CREB phosphorylation and CREB protein downregulation. Overall, our study enforces the evidence regarding CREB as a potential druggable target, identifies the small epigenetic molecule GSKJ4 as an "inhibitor" of CREB, and encourages the design of future GSKJ4-based studies for the development of innovative approaches for AML therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luigi Sapio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
9
|
Zhang X, Liu L, Yuan X, Wei Y, Wei X. JMJD3 in the regulation of human diseases. Protein Cell 2019; 10:864-882. [PMID: 31701394 PMCID: PMC6881266 DOI: 10.1007/s13238-019-0653-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, many studies have shown that histone methylation plays an important role in maintaining the active and silent state of gene expression in human diseases. The Jumonji domain-containing protein D3 (JMJD3), specifically demethylate di- and trimethyl-lysine 27 on histone H3 (H3K27me2/3), has been widely studied in immune diseases, infectious diseases, cancer, developmental diseases, and aging related diseases. We will focus on the recent advances of JMJD3 function in human diseases, and looks ahead to the future of JMJD3 gene research in this review.
Collapse
Affiliation(s)
- Xiangxian Zhang
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Liu
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Yuan
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiawei Wei
- Laboratory of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Kim SC, Shin R, Seo HY, Kim M, Park JW, Jeong SY, Ku JL. Identification of a Novel Fusion Gene, FAM174A-WWC1, in Early-Onset Colorectal Cancer: Establishment and Characterization of Four Human Cancer Cell Lines from Early-Onset Colorectal Cancers. Transl Oncol 2019; 12:1185-1195. [PMID: 31228769 PMCID: PMC6600802 DOI: 10.1016/j.tranon.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide and represents the second most common cause of all cancer-related deaths in Korea. Although epidemiological data indicate a sharp increase in the incidence of CRC among individuals older than 50 years, more than 10% of CRCs occur before reaching 50. These are known as early-onset CRCs (EOCRCs) and are likely to be suggestive of hereditary predisposition. However, known familial CRC syndromes account for only 20% of genetic aberrations of EOCRC, and the remaining 80% are still in question. Therefore, we aimed to establish reproducible biological resources and contribute to expand the mutation database of EOCRC. Four cell lines derived from the original tumor mass of CRC patients diagnosed under age 30 years were established, and next-generation sequencing technique was used to identify the genetic features of EOCRC. We have identified one novel fusion gene, FAM174A-WWC1, and analyzed its functional role. The induction of FAM174A-WWC1 to normal fibroblast caused alternations in cellular morphology as well as intercellular expression of E-cadherin and N-cadherin. Moreover, WWC1 carrying the fused FAM174A domain not only abrogated the membrane expression of YAP1 but also significantly increased the levels of nucleic YAP1. As a result, the FAM174A-WWC1 expression increased the oncogenic capacity and invasiveness of normal fibroblasts, which suggests its role as a potential driver mutation of EOCRC.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Rumi Shin
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061
| | - Ha-Young Seo
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Minjung Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
11
|
Illiano M, Conte M, Sapio L, Nebbioso A, Spina A, Altucci L, Naviglio S. Forskolin Sensitizes Human Acute Myeloid Leukemia Cells to H3K27me2/3 Demethylases GSKJ4 Inhibitor via Protein Kinase A. Front Pharmacol 2018; 9:792. [PMID: 30079022 PMCID: PMC6063003 DOI: 10.3389/fphar.2018.00792] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 01/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy occurring very often in older adults, with poor prognosis depending on both rapid disease progression and drug resistance occurrence. Therefore, new therapeutic approaches are demanded. Epigenetic marks play a relevant role in AML. GSKJ4 is a novel inhibitor of the histone demethylases JMJD3 and UTX. To note GSKJ4 has been recently shown to act as a potent small molecule inhibitor of the proliferation in many cancer cell types. On the other hand, forskolin, a natural cAMP raising compound, used for a long time in traditional medicine and considered safe also in recent studies, is emerging as a very interesting molecule for possible use in cancer therapy. Here, we investigate the effects of forskolin on the sensitivity of human leukemia U937 cells to GSKJ4 through flow cytometry-based assays (cell-cycle progression and cell death), cell number counting, and immunoblotting experiments. We provide evidence that forskolin markedly potentiates GSKJ4-induced antiproliferative effects by apoptotic cell death induction, accompanied by a dramatic BCL2 protein down-regulation as well as caspase 3 activation and PARP protein cleavage. Comparable effects are observed with the phosphodiesterase inhibitor IBMX and 8-Br-cAMP analogous, but not by using 8-pCPT-2'-O-Me-cAMP Epac activator. Moreover, the forskolin-induced enhancement of sensitivity to GSKJ4 is counteracted by pre-treatment with Protein Kinase A (PKA) inhibitors. Altogether, our data strongly suggest that forskolin sensitizes U937 cells to GSKJ4 inhibitor via a cAMP/PKA-mediated mechanism. Our findings provide initial evidence of anticancer activity induced by forskolin/GSKJ4 combination in leukemia cells and underline the potential for use of forskolin and GSKJ4 in the development of innovative and effective therapeutic approaches for AML treatment.
Collapse
Affiliation(s)
- Michela Illiano
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Luigi Sapio
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Annamaria Spina
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|