1
|
K ST, G B, Kumar TP. The game of language learning and rewiring biocognitive receptors. MethodsX 2025; 14:103143. [PMID: 39846011 PMCID: PMC11751572 DOI: 10.1016/j.mex.2024.103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
This study introduces a framework that integrates AI-driven Game-Based Language Teaching (GBLT) with advanced neuroscience to transform language education for visually impaired learners. Built on the principles of neuroplasticity and epigenetics, the approach leverages educational psychology with the help of adaptive AI to deliver personalized, gamified learning experiences that reshape neural pathways, improve memory retention, and strengthen emotional resilience. By fostering low-stress, immersive environments, it triggers positive epigenetic changes, enhancing long-term cognitive flexibility. This method article presents an interdisciplinary inclusive scientific framework that unites gamification, technology, epigenetics, and neuroscience, empowering learners and promoting sustainable well-being, while laying the groundwork for intergenerational academic and personal growth.•To propose a teaching methodology that aims to bridge gaps in traditional and game based language teaching by integrating neuroscience and epigenetics, creating an inclusive framework tailored to meet the unique needs of visually impaired learners.•The method emphasizes creating stress-free, rewarding educational environments that induce neural and epigenetic changes. These changes optimize gene expression to improve retention, emotional resilience, and cognitive flexibility, ensuring both immediate academic success and lifelong developmental benefits for diverse learners.•This framework promotes cognitive, emotional, social and biological development alongside language acquisition giving a holistic mode of growth.
Collapse
Affiliation(s)
- Sri Takshara K
- School of Social Sciences and Languages, Vellore Institute of Technology, Vandalur - Kelambakkam Road, Chennai, 600 127 Tamil Nadu, India
| | - Bhuvaneswari G
- School of Social Sciences and Languages, Vellore Institute of Technology, Vandalur - Kelambakkam Road, Chennai, 600 127 Tamil Nadu, India
| | - T.S. Pradeep Kumar
- School of Computer Science and Engineering, Vellore Institute of Technology, Vandalur - Kelambakkam Road, Chennai, 600 127 Tamil Nadu, India
| |
Collapse
|
2
|
Tungkijanansin N, Sirinara P, Tunvirachaisakul C, Srikam S, Kittiban K, Thongthip S, Kerdcharoen T, Maes M, Kulsing C. Sweat-based stress screening with gas chromatography-ion mobility spectrometry and electronic nose. Anal Chim Acta 2024; 1320:343029. [PMID: 39142792 DOI: 10.1016/j.aca.2024.343029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Diagnosis of stress generally involves uses of questionnaires which can provide biased results. The more reliable approach relies on observation of individual symptoms by psychiatrists which is time consuming and could not be applicable for massive scale screening tests. This research established alternative approaches with gas chromatography-ion mobility spectrometry (GC-IMS) and electronic nose (e-nose) to perform fast stress screening based on fingerprinting of highly volatile compounds in headspaces of sweat. The investigated samples were obtained from 154 female nurse volunteers who also provided the data of questionnaire-based mental health scores with the high stress cases confirmed by psychiatrists. RESULTS The interviews by psychiatrists revealed 14 volunteers with high stress. Their axillary sweat samples and that from 32 nurses with low/moderate stress (controls) were collected onto cotton rods and analysed with GC-IMS. The possible marker peaks were selected based on the accuracy data. They were tentatively identified as ammonia, diethyl ether, methanol, octane, pentane, acetone and dimethylamine which could involve different endogenous mechanisms or the relationships with the local microbiomes. The data were further analysed using partial least squares discriminant analysis with the receiver operating characteristic curves showing the optimum accuracy, sensitivity and selectivity of 87%, 86% and 88%, respectively. Providing that the samples were obtained from the nurses without deodorant uses, the high stress cases could be screened using e-nose sensors with the accuracy of 89%. The sensor responses could be correlated with the marker peak area data in GC-IMS with the coefficients ranging from -0.70 to 0.80. SIGNIFICANCE This represents the first investigation of highly volatile compound markers in sweat for high stress screening. The established methods were simple, reliable, rapid and non-invasive, which could be further adapted into the portable platform of e-nose sensors with the practical application to perform the screening tests for nurses in Phra Nakorn Si Ayutthaya hospital, Thailand.
Collapse
Affiliation(s)
- Nuttanee Tungkijanansin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patthrarawalai Sirinara
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Cognitive Impairment and Dementia, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Saran Srikam
- Department of Occupational Medicine, Phra Nakhon Si Ayutthaya Hospital, Phra Nakhon Si Ayutthaya, 13000, Thailand
| | - Kasinee Kittiban
- Department of Occupational Medicine, Phra Nakhon Si Ayutthaya Hospital, Phra Nakhon Si Ayutthaya, 13000, Thailand
| | - Siriwan Thongthip
- Maha Chakri Sirindhorn Clinical Research Center Under the Royal Patronage, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Teerakiat Kerdcharoen
- Department of Physics, Faculty of Science, and Research Network of NANOTEC at Mahidol University National Nanotechnology Center, Bangkok, 10400, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Cognitive Impairment and Dementia, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chadin Kulsing
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Wu Y, Chen Y, Chen B, Wu W, Yang J. DNA methylation mediated genetic risk in severe acne in a young men population. Front Med (Lausanne) 2023; 10:1196149. [PMID: 37554505 PMCID: PMC10405078 DOI: 10.3389/fmed.2023.1196149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Acne is a chronic inflammatory skin disease that affects the pilosebaceous follicle and is influenced by heredity, hormones, inflammation, and the environment. At present, the recognized pathogenesis mainly includes four categories: excessive sebum secretion, excessive Cutibacterium acnes proliferation, excessive keratinization of sebaceous glands in hair follicles, and inflammatory mechanisms. Previous studies have found that DNA methylation is closely related to some chronic inflammatory skin diseases, and there is evidence that DNA methylation is controlled by genetic factors, making us want to know the relationship between DNA methylation, genetic variation and acne. MATERIALS AND METHODS In our previous study, we performed genome-wide DNA methylation analysis in peripheral blood samples from 44 patients with severe acne and 44 unaffected normal subjects, and identified 23 differentially methylated probes (DMPs). In this study, we identified single nucleotide polymorphisms (SNPs) associated with severe acne by genome-wide association analysis in these 88 samples. To test the association between SNPs and DMPs, we conducted DNA methylation quantitative trait loci (methQTL) analysis. Next, causal inference testing (CIT) was used to determine whether genetic variation influences DNA methylation, which impacts disease phenotypes. RESULT We found 38,269 SNPs associated with severe acne. By methQTL analysis, we obtained 24 SNP-CpG pairs that reached the threshold (FDR < 0.05), which included 7 unique CpGs and 22 unique methQTL SNPs. After CIT analysis, we found that 11 out of 24 pairs of SNP-CpG showed a weakened SNP effect after adjustment for methylation, indicating a methylation-mediated relationship between SNPs and severe acne. These 11 SNP-CpG pairs consist of four unique CpG sites and 11 SNPs, of which three CpG sites, cg03020863, cg20652636, and cg19964325, are located on the gene body of PDGFD, the intron of SH2D6, and the 5'UTR of the IL1R1 gene, respectively. CONCLUSION During this study, the DNA methylation of certain genes was found to be influenced by genetic factors and mediated the risk of severe acne in a young Chinese male population, providing a new perspective on the pathogenesis of severe acne.
Collapse
Affiliation(s)
- Yujia Wu
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Yun Chen
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Bo Chen
- School of Basic Medical Sciences, Dali University, Dali, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiankang Yang
- School of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
4
|
Dee G, Ryznar R, Dee C. Epigenetic Changes Associated with Different Types of Stressors and Suicide. Cells 2023; 12:cells12091258. [PMID: 37174656 PMCID: PMC10177343 DOI: 10.3390/cells12091258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Stress is associated with various epigenetic changes. Some stress-induced epigenetic changes are highly dynamic, whereas others are associated with lasting marks on the epigenome. In our study, a comprehensive narrative review of the literature was performed by investigating the epigenetic changes that occur with acute stress, chronic stress, early childhood stress, and traumatic stress exposures, along with examining those observed in post-mortem brains or blood samples of suicide completers and attempters. In addition, the transgenerational effects of these changes are reported. For all types of stress studies examined, the genes Nr3c1, OXTR, SLC6A4, and BDNF reproducibly showed epigenetic changes, with some modifications observed to be passed down to subsequent generations following stress exposures. The aforementioned genes are known to be involved in neuronal development and hormonal regulation and are all associated with susceptibility to mental health disorders including depression, anxiety, personality disorders, and PTSD (post-traumatic stress disorder). Further research is warranted in order to determine the scope of epigenetic actionable targets in individuals suffering from the long-lasting effects of stressful experiences.
Collapse
Affiliation(s)
- Garrett Dee
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80112, USA
| | - Rebecca Ryznar
- Molecular Biology, Department of Biomedical Sciences, Rocky Vista University, Parker, CO 80112, USA
| | - Colton Dee
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| |
Collapse
|
5
|
Kpodo KR, Proszkowiec-Weglarz M. Physiological effects of in ovo delivery of bioactive substances in broiler chickens. Front Vet Sci 2023; 10:1124007. [PMID: 37008350 PMCID: PMC10060894 DOI: 10.3389/fvets.2023.1124007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The poultry industry has improved genetics, nutrition, and management practices, resulting in fast-growing chickens; however, disturbances during embryonic development may affect the entire production cycle and cause irreversible losses to broiler chicken producers. The most crucial time in the chicks' development appears to be the perinatal period, which encompasses the last few days of pre-hatch and the first few days of post-hatch. During this critical period, intestinal development occurs rapidly, and the chicks undergo a metabolic and physiological shift from the utilization of egg nutrients to exogenous feed. However, the nutrient reserve of the egg yolk may not be enough to sustain the late stage of embryonic development and provide energy for the hatching process. In addition, modern hatchery practices cause a delay in access to feed immediately post-hatch, and this can potentially affect the intestinal microbiome, health, development, and growth of the chickens. Development of the in ovo technology allowing for the delivery of bioactive substances into chicken embryos during their development represents a way to accommodate the perinatal period, late embryo development, and post-hatch growth. Many bioactive substances have been delivered through the in ovo technology, including carbohydrates, amino acids, hormones, prebiotics, probiotics and synbiotics, antibodies, immunostimulants, minerals, and microorganisms with a variety of physiological effects. In this review, we focused on the physiological effects of the in ovo delivery of these substances, including their effects on embryo development, gastrointestinal tract function and health, nutrient digestion, immune system development and function, bone development, overall growth performance, muscle development and meat quality, gastrointestinal tract microbiota development, heat stress response, pathogens exclusion, and birds metabolism, as well as transcriptome and proteome. We believe that this method is widely underestimated and underused by the poultry industry.
Collapse
|
6
|
Apsley AT, Etzel L, Hastings WJ, Heim CC, Noll JG, O'Donnell KJ, Schreier HMC, Shenk CE, Ye Q, Shalev I. Investigating the effects of maltreatment and acute stress on the concordance of blood and DNA methylation methods of estimating immune cell proportions. Clin Epigenetics 2023; 15:33. [PMID: 36855187 PMCID: PMC9976543 DOI: 10.1186/s13148-023-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/05/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Immune cell proportions can be used to detect pathophysiological states and are also critical covariates in genomic analyses. The complete blood count (CBC) is the most common method of immune cell proportion estimation, but immune cell proportions can also be estimated using whole-genome DNA methylation (DNAm). Although the concordance of CBC and DNAm estimations has been validated in various adult and clinical populations, less is known about the concordance of existing estimators among stress-exposed individuals. As early life adversity and acute psychosocial stress have both been associated with unique DNAm alterations, the concordance of CBC and DNAm immune cell proportion needs to be validated in various states of stress. RESULTS We report the correlation and concordance between CBC and DNAm estimates of immune cell proportions using the Illumina EPIC DNAm array within two unique studies: Study 1, a high-risk pediatric cohort of children oversampled for exposure to maltreatment (N = 365, age 8 to 14 years), and Study 2, a sample of young adults who have participated in an acute laboratory stressor with four pre- and post-stress measurements (N = 28, number of observations = 100). Comparing CBC and DNAm proportions across both studies, estimates of neutrophils (r = 0.948, p < 0.001), lymphocytes (r = 0.916, p < 0.001), and eosinophils (r = 0.933, p < 0.001) were highly correlated, while monocyte estimates were moderately correlated (r = 0.766, p < 0.001) and basophil estimates were weakly correlated (r = 0.189, p < 0.001). In Study 1, we observed significant deviations in raw values between the two approaches for some immune cell subtypes; however, the observed differences were not significantly predicted by exposure to child maltreatment. In Study 2, while significant changes in immune cell proportions were observed in response to acute psychosocial stress for both CBC and DNAm estimates, the observed changes were similar for both approaches. CONCLUSIONS Although significant differences in immune cell proportion estimates between CBC and DNAm exist, as well as stress-induced changes in immune cell proportions, neither child maltreatment nor acute psychosocial stress alters the concordance of CBC and DNAm estimation methods. These results suggest that the agreement between CBC and DNAm estimators of immune cell proportions is robust to exposure to child maltreatment and acute psychosocial stress.
Collapse
Affiliation(s)
- Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
- Department of Molecular, Cellular, and Integrated Biosciences, The Pennsylvania State University, University Park, PA, USA
| | - Laura Etzel
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Waylon J Hastings
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Christine C Heim
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
- Corporate Member of Freie Universität Berlin, and Humboldt-Universität Zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennie G Noll
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
| | - Kieran J O'Donnell
- Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Hannah M C Schreier
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Chad E Shenk
- Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, USA
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Qiaofeng Ye
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Olsen MB, Sannes AC, Yang K, Nielsen MB, Einarsen SV, Christensen JO, Pallesen S, Bjørås M, Gjerstad J. Mapping of pituitary stress-induced gene regulation connects Nrcam to negative emotions. iScience 2022; 25:104953. [PMID: 36060062 PMCID: PMC9437855 DOI: 10.1016/j.isci.2022.104953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 01/22/2023] Open
Abstract
Environmental stressors such as repeated social defeat may initiate powerful activation of subconscious parts of the brain. Here, we examine the consequences of such stress (induced by resident-intruder paradigm) on the pituitary gland. In male stressed vs. control rats, by RNA- and bisulfite DNA sequencing, we found regulation of genes involved in neuron morphogenesis and communication. Among these, Neuronal cell adhesion molecule (Nrcam) showed reduced transcription and reduced DNA methylation in a region corresponding to intron 1 in human NRCAM. Also, genetic variability in this area was associated with altered stress response in male humans exposed to repeated social defeat in the form of abusive supervision. Thus, our data show that the pituitary gene expression may be affected by social stress and that genetic variability in NRCAM intron 1 region influences stress-induced negative emotions. We hope our shared datasets will facilitate further exploration of the motions triggered by social stressors. Social stress-induced pituitary gene regulation was characterized in rats Here, genes involved in neuron morphogenesis and communication were regulated Both expression and methylation of the Nrcam gene were affected Genetic variability in NRCAM in humans influenced stress-induced negative emotions
Collapse
Affiliation(s)
- Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Corresponding author
| | | | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Morten Birkeland Nielsen
- National Institute of Occupational Health, Oslo, Norway
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | | | | | - Ståle Pallesen
- Department of Psychosocial Science, University of Bergen, Bergen, Norway
| | - Magnar Bjørås
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
8
|
Scorza P, Corbeil T, Wall M, Monk C, Suglia S, Wainberg M, Alegria M, Canino G, Bird H, Duarte CS. Adverse childhood experiences and perceived stress in early adulthood in the context of disadvantage. CHILD ABUSE & NEGLECT 2022; 131:105687. [PMID: 35696833 PMCID: PMC10098899 DOI: 10.1016/j.chiabu.2022.105687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Adverse childhood experiences (ACEs) may sensitize individuals to view situations in adulthood as more stressful, which may contribute to poor health outcomes. In populations facing disadvantage, ACEs may lead to the accumulation of stressors (stress proliferation or mediation hypothesis) throughout the life course. ACEs could also heighten perceived stress later in life due to its enduring impact (stress sensitization or effect modification hypothesis). OBJECTIVE We examine the associations between ACEs and perceived stress in early adulthood, considering concurrent life stressors, in a longitudinal cohort of Puerto Rican youth exposed to a high degree of disadvantage. PARTICIPANTS AND SETTING A community-based sample of 1626 Puerto Rican children living in disadvantaged contexts was followed longitudinally in the Boricua Youth Study from 2000 to 2017. METHODS ACEs were measured prospectively during childhood (<18 yrs), and life stressors and past year perceived stress were measured in early adulthood (EA; mean age = 23.4, sd 2.22). Causal mediation analysis tested ACEs' effects on EA perceived stress indirectly through life stressors including potential effect modification. RESULTS ACEs influenced perceived stress in EA (standardized total effect = 0.13, p < .001) with 35% mediated by increased exposure to life stressors in EA due to ACEs. There was no evidence of increased sensitization to EA life stressors among those with higher ACEs exposure. CONCLUSIONS ACEs contribute to perceived stress in EA, albeit with small effect, partially through accumulating effects of ongoing stressors, supporting the stress proliferation hypothesis. Policies aimed at reducing exposure to adversity from childhood to EA are needed to reduce the experience of ACEs and negative sequelae.
Collapse
Affiliation(s)
- Pamela Scorza
- Department of Obstetrics & Gynecology, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street, New York, NY 10032, United States.
| | - Thomas Corbeil
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, United States; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| | - Melanie Wall
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, United States; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| | - Catherine Monk
- Department of Obstetrics & Gynecology, Columbia University Vagelos College of Physicians and Surgeons, 622 West 168th Street, New York, NY 10032, United States; Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, United States; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| | - Shakira Suglia
- Emory University, 201 Dowman Drive, Atlanta, GA 30322, United States
| | - Milton Wainberg
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, United States; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| | - Margarita Alegria
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States
| | - Glorisa Canino
- University of Puerto Rico, 14, 2534 Av. Universidad Ste. 1401, San Juan 00925, Puerto Rico
| | - Hector Bird
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, United States
| | - Cristiane S Duarte
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, United States; New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States
| |
Collapse
|
9
|
Rami FZ, Nguyen TB, Oh YE, Karamikheirabad M, Le TH, Chung YC. Risperidone Induced DNA Methylation Changes in Dopamine Receptor and Stathmin Genes in Mice Exposed to Social Defeat Stress. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:373-388. [PMID: 35466108 PMCID: PMC9048015 DOI: 10.9758/cpn.2022.20.2.373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thong Ba Nguyen
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Eun Oh
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Maryam Karamikheirabad
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University and Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
10
|
de Sousa Maciel I, Sales AJ, Casarotto PC, Castrén E, Biojone C, Joca SRL. Nitric Oxide Synthase inhibition counteracts the stress-induced DNA methyltransferase 3b expression in the hippocampus of rats. Eur J Neurosci 2022; 55:2421-2434. [PMID: 33170977 DOI: 10.1111/ejn.15042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022]
Abstract
It has been postulated that the activation of NMDA receptors (NMDAr) and nitric oxide (NO) production in the hippocampus is involved in the behavioral consequences of stress. Stress triggers NMDAr-induced calcium influx in limbic areas, such as the hippocampus, which in turn activates neuronal NO synthase (nNOS). Inhibition of nNOS or NMDAr activity can prevent stress-induced effects in animal models, but the molecular mechanisms behind this effect are still unclear. In this study, cultured hippocampal neurons treated with NMDA or dexamethasone showed an increased of DNA methyltransferase 3b (DNMT3b) mRNA expression, which was blocked by pre-treatment with nNOS inhibitor nω -propyl-l-arginine (NPA). In rats submitted to the Learned Helplessness paradigm (LH), we observed that inescapable stress increased DNMT3b mRNA expression at 1h and 24h in the hippocampus. The NOS inhibitors 7-NI and aminoguanidine (AMG) decreased the number of escape failures in LH and counteracted the changes in hippocampal DNMT3b mRNA induced in this behavioral paradigm. Altogether, our data suggest that NO produced in response to NMDAr activation following stress upregulates DNMT3b in the hippocampus.
Collapse
Affiliation(s)
- Izaque de Sousa Maciel
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil
| | - Amanda J Sales
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto - SP, Brazil
| | | | - Eero Castrén
- Neuroscience Center, HiLIFE, University of Helsinki, Finland
| | | | - Sâmia R L Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto -SP, Brazil
| |
Collapse
|
11
|
Hou GM, Zhang YH, Zhang JX. Inheritance of social dominance is associated with global sperm DNA methylation in inbred male mice. Curr Zool 2022; 69:143-155. [PMID: 37092005 PMCID: PMC10120999 DOI: 10.1093/cz/zoac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Dominance relationships between males and their associated traits are usually heritable and have implications for sexual selection in animals. In particular, social dominance and its related male pheromones are heritable in inbred mice; thus, we wondered whether epigenetic changes due to altered levels of DNA methylation determine inheritance. Here, we used C57BL/6 male mice to establish a social dominance–subordination relationship through chronic dyadic encounters, and this relationship and pheromone covariation occurred in their offspring, indicative of heritability. Through transcriptome sequencing and whole-genome DNA methylation profiling of the sperm of both generations, we found that differential methylation of many genes was induced by social dominance–subordination in sires and could be passed on to the offspring. These methylated genes were mainly related to growth and development processes, neurodevelopment and cellular transportation. The expression of the genes with similar functions in WGBS was also differentiated by social dominance–subordination, as revealed by RNA-seq. In particular, the gene Dennd1a, which regulates neural signalling, was differentially methylated and expressed in the sperm and medial prefrontal cortex (mPFC) in paired males before and after dominance–subordination establishment, suggesting the potential epigenetic control and inheritance of social dominance-related aggression. We suggest that social dominance might be passed on to male offspring through sperm DNA methylation and that the differences could potentially affect male competition in offspring by affecting the development of the nervous system.
Collapse
Affiliation(s)
- Guan-Mei Hou
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao-Hua Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Xu Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Zan GY, Sun X, Wang YJ, Liu R, Wang CY, Du WJ, Guo LB, Chai JR, Li QL, Liu ZQ, Liu JG. Amygdala dynorphin/κ opioid receptor system modulates depressive-like behavior in mice following chronic social defeat stress. Acta Pharmacol Sin 2022; 43:577-587. [PMID: 34035484 PMCID: PMC8888759 DOI: 10.1038/s41401-021-00677-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/02/2021] [Indexed: 02/03/2023]
Abstract
Major depression disorder is a severe and recurrent neuropsychological disorder characterized by lowered mood and social activity and cognitive impairment. Owing to unclear molecular mechanisms of depression, limited interventions are available in clinic. In this study we investigated the role of dynorphin/κ opioid receptor system in the development of depression. Mice were subjected to chronic social defeat stress for 14 days. Chronic social defeat stress induced significant social avoidance in mice characterized by decreased time duration in the interaction zone and increased time duration in the corner zone. Pre-administration of a κ opioid receptor antagonist norBNI (10 mg/kg, i.p.) could prevent the development of social avoidance induced by chronic social defeat stress. Social avoidance was not observed in κ opioid receptor knockout mice subjected to chronic social defeat stress. We further revealed that social defeat stress activated c-fos and ERK signaling in the amygdala without affecting the NAc, hippocampus and hypothalamus, and ERK activation was blocked by systemic injection of norBNI. Finally, the expression of dynorphin A, the endogenous ligand of κ opioid receptor, was significantly increased in the amygdala following social defeat stress; microinjection of norBNI into the amygdala prevented the development of depressive-like behaviors caused by social defeat stress. The present study demonstrates that upregulated dynorphin/κ opioid receptor system in the amygdala leads to the emergence of depression following chronic social defeat stress, and sheds light on κ opioid receptor antagonists as potential therapeutic agents for the prevention and treatment of depression following chronic stress.
Collapse
Affiliation(s)
- Gui-ying Zan
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China ,grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiang Sun
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yu-jun Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rui Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Chen-yao Wang
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-jia Du
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Liu-bin Guo
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing-rui Chai
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing-lin Li
- grid.252251.30000 0004 1757 8247Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhi-qiang Liu
- grid.24516.340000000123704535Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jing-gen Liu
- grid.419093.60000 0004 0619 8396Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
13
|
Cordner ZA, Khambadkone SG, Zhu S, Bai J, Forti RR, Goodman E, Tamashiro KL, Ross CA. Ankyrin-G Heterozygous Knockout Mice Display Increased Sensitivity to Social Defeat Stress. Complex Psychiatry 2021; 7:71-79. [PMID: 35928299 PMCID: PMC8740233 DOI: 10.1159/000518819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/30/2021] [Indexed: 08/21/2024] Open
Abstract
The ANK3 locus has been repeatedly found to confer an increased risk for bipolar disorder. ANK3 codes for Ankyrin-G (Ank-G), a scaffold protein concentrated at axon initial segments, nodes of Ranvier, and dendritic spines, where it organizes voltage-gated sodium and potassium channels and cytoskeletal proteins. Mice with homozygous conditional knockout of Ank-G in the adult forebrain display hyperactivity and reduced anxiety-like behaviors, responsive to mood stabilizers. Their behavior switches to a depression-like phenotype when exposed to chronic social defeat stress (SDS), and then spontaneously reverts to baseline hyperactivity. Ank-G heterozygous conditional knockouts (Ank-G Het cKO) have not previously been characterized. Here, we describe the behavior of Ank-G Het cKO mice compared to littermate controls in the open field, elevated plus maze, and forced swim test, under both unstressed and stressed conditions. We found that Ank-G Het cKO is not significantly different from controls at baseline or after chronic SDS. The chronic stress-induced "depression-like" behavioral phenotype is persistent for at least 28 days and is responsive to fluoxetine. Strikingly, Ank-G Het cKO mice display increased sensitivity to a short duration SDS, which does not affect controls. The heterozygous Ank-G genetic model may provide novel insights into the role of Ank-G in the pathophysiology of stress sensitivity and "depression-like" phenotypes and could be useful for studying Ank-G-related gene-environment interactions.
Collapse
Affiliation(s)
- Zachary A. Cordner
- Behavioral Neuroscience, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seva G. Khambadkone
- Behavioral Neuroscience, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular & Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Zhu
- Division of Neurobiology, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin Bai
- Division of Neurobiology, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - R. Rasadokht Forti
- Division of Neurobiology, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ethan Goodman
- Behavioral Neuroscience, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kellie L.K. Tamashiro
- Behavioral Neuroscience, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher A. Ross
- Behavioral Neuroscience, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Division of Neurobiology, Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Departments of Neurology, Neuroscience, and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Cordner ZA, Marshall-Thomas I, Boersma GJ, Lee RS, Potash JB, Tamashiro KL. Fluoxetine and environmental enrichment similarly reverse chronic social stress-related depression- and anxiety-like behavior, but have differential effects on amygdala gene expression. Neurobiol Stress 2021; 15:100392. [PMID: 34568521 PMCID: PMC8449130 DOI: 10.1016/j.ynstr.2021.100392] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 01/26/2023] Open
Abstract
The adverse effects of stress on brain and behavior have long been known and well-studied, with abundant evidence linking stress to, among other things, mood and anxiety disorders. Likewise, many have investigated potential treatments for stress-related mood and anxiety phenotypes and demonstrated good response to standard antidepressant medications like selective serotonin reuptake inhibitors (SSRIs), as well as environmental manipulations like exercise or enrichment. However, the extent to which stress and various treatments act on overlapping pathways in the brain is less well understood. Here, we used a widely studied social defeat stress paradigm to induce a robust depression- and anxiety-like phenotype and chronic corticosterone elevation that persisted for at least 4 weeks in wild type male mice. When mice were treated with either the SSRI fluoxetine or an enriched environment, both led to similar behavioral recovery from social defeat. We then focused on the amygdala and assessed the effects of social defeat, fluoxetine, and enrichment on 168 genes broadly related to synaptic plasticity or oxidative stress. We found 24 differentially expressed genes in response to social defeat stress. Interestingly, fluoxetine led to broad normalization of the stress-induced expression pattern while enrichment led to expression changes in a separate set of genes. Together, this study provides additional insight into the chronic effects of social defeat stress on behavior and gene expression in the amygdala. The findings also suggest that, for a subset of genes assessed, fluoxetine and environmental enrichment have strikingly divergent effects on expression in the amygdala, despite leading to similar behavioral outcomes.
Collapse
Affiliation(s)
- Zachary A. Cordner
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Isaiah Marshall-Thomas
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Gretha J. Boersma
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Richard S. Lee
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - James B. Potash
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
| | - Kellie L.K. Tamashiro
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA
- Corresponding author. Department of Psychiatry & Behavioral Sciences Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 618, Baltimore, MD, 21205, USA.
| |
Collapse
|
15
|
Shirvani-Farsani Z, Maloum Z, Bagheri-Hosseinabadi Z, Vilor-Tejedor N, Sadeghi I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J Psychiatr Res 2021; 141:34-49. [PMID: 34171761 DOI: 10.1016/j.jpsychires.2021.06.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is a broadly-investigated epigenetic modification that has been considered as a heritable and reversible change. Previous findings have indicated that DNA methylation regulates gene expression in the central nervous system (CNS). Also, disturbance of DNA methylation patterns has been associated with destructive consequences that lead to human brain diseases such as neuropsychiatric disorders (NPDs). In this review, we comprehensively discuss the mechanism and function of DNA methylation and its most recent associations with the pathology of NPDs-including major depressive disorder (MDD), schizophrenia (SZ), autism spectrum disorder (ASD), bipolar disorder (BD), and attention/deficit hyperactivity disorder (ADHD). We also discuss how heterogeneous findings demand further investigations. Finally, based on the recent studies we conclude that DNA methylation status may have implications in clinical diagnostics and therapeutics as a potential epigenetic biomarker of NPDs.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Maloum
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands; Pompeu Fabra University, Barcelona, Spain.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
| |
Collapse
|
16
|
Reshetnikov VV, Kisaretova PE, Ershov NI, Merkulova TI, Bondar NP. Social defeat stress in adult mice causes alterations in gene expression, alternative splicing, and the epigenetic landscape of H3K4me3 in the prefrontal cortex: An impact of early-life stress. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110068. [PMID: 32810572 DOI: 10.1016/j.pnpbp.2020.110068] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 12/24/2022]
Abstract
Chronic stress is the leading risk factor of a broad range of severe psychopathologies. Nonetheless, the molecular mechanisms triggering these pathological processes are not well understood. In our study, we investigated the effects of 15-day social defeat stress (SDS) on the genome-wide landscape of trimethylation at the 4th lysine residue of histone H3 (H3K4me3) and on the transcriptome in the prefrontal cortex of mice that were reared normally (group SDS) or subjected to maternal separation early in life (group MS+SDS). The mice with the history of stress early in life showed increased susceptibility to SDS in adulthood and demonstrated long-lasting genome-wide alterations in gene expression and splicing as well as in the H3K4me3 epigenetic landscape in the prefrontal cortex. Thus, the high-throughput techniques applied here allowed us to simultaneously detect, for the first time, genome-wide epigenetic and transcriptional changes in the murine prefrontal cortex that are associated with both chronic SDS and increased susceptibility to this stressor.
Collapse
Affiliation(s)
- V V Reshetnikov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia.
| | - P E Kisaretova
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - N I Ershov
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - T I Merkulova
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - N P Bondar
- Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
17
|
Krick MV, Desmarais E, Samaras A, Guéret E, Dimitroglou A, Pavlidis M, Tsigenopoulos C, Guinand B. Family-effects in the epigenomic response of red blood cells to a challenge test in the European sea bass (Dicentrarchus labrax, L.). BMC Genomics 2021; 22:111. [PMID: 33563212 PMCID: PMC7871408 DOI: 10.1186/s12864-021-07420-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract Background In fish, minimally invasive blood sampling is widely used to monitor physiological stress with blood plasma biomarkers. As fish blood cells are nucleated, they might be a source a potential new markers derived from ‘omics technologies. We modified the epiGBS (epiGenotyping By Sequencing) technique to explore changes in genome-wide cytosine methylation in the red blood cells (RBCs) of challenged European sea bass (Dicentrarchus labrax), a species widely studied in both natural and farmed environments. Results We retrieved 501,108,033 sequencing reads after trimming, with a mean mapping efficiency of 73.0% (unique best hits). Minor changes in RBC methylome appeared to manifest after the challenge test and a family-effect was detected. Only fifty-seven differentially methylated cytosines (DMCs) close to 51 distinct genes distributed on 17 of 24 linkage groups (LGs) were detected between RBCs of pre- and post-challenge individuals. Thirty-seven of these genes were previously reported as differentially expressed in the brain of zebrafish, most of them involved in stress coping differences. While further investigation remains necessary, few DMC-related genes associated to the Brain Derived Neurotrophic Factor, a protein that favors stress adaptation and fear memory, appear relevant to integrate a centrally produced stress response in RBCs. Conclusion Our modified epiGBS protocol was powerful to analyze patterns of cytosine methylation in RBCs of D. labrax and to evaluate the impact of a challenge using minimally invasive blood samples. This study is the first approximation to identify epigenetic biomarkers of exposure to stress in fish. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07420-9.
Collapse
Affiliation(s)
- Madoka Vera Krick
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| | - Erick Desmarais
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| | | | - Elise Guéret
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France.,Univ. Montpellier, CNRS, INSERM, Montpellier, France.,Montpellier GenomiX, France Génomique, Montpellier, France
| | | | - Michalis Pavlidis
- Department of Biology, University of Crete, 70013, Heraklion, Greece
| | - Costas Tsigenopoulos
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 715 00, Heraklion, Greece
| | - Bruno Guinand
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Maternal DNA Methylation During Pregnancy: a Review. Reprod Sci 2021; 28:2758-2769. [PMID: 33469876 DOI: 10.1007/s43032-020-00456-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Multiple environmental, behavioral, and hereditary factors affect pregnancy. Recent studies suggest that epigenetic modifications, such as DNA methylation (DNAm), affect both maternal and fetal health during the period of gestation. Some of the pregnancy-related risk factors can influence maternal DNAm, thus predisposing both the mother and the neonate to clinical adversities with long-lasting consequences. DNAm alterations in the promoter and enhancer regions modulate gene expression changes which play vital physiological role. In this review, we have discussed the recent advances in our understanding of maternal DNA methylation changes during pregnancy and its associated complications such as gestational diabetes and anemia, adverse pregnancy outcomes like preterm birth, and preeclampsia. We have also highlighted some major gaps and limitations in the area which if addressed might improve our understanding of pregnancy and its associated adverse clinical conditions, ultimately leading to healthy pregnancies and reduction of public health burden.
Collapse
|
19
|
Ognik K, Konieczka P, Stępniowska A, Jankowski J. Oxidative and Epigenetic Changes and Gut Permeability Response in Early-Treated Chickens with Antibiotic or Probiotic. Animals (Basel) 2020; 10:E2204. [PMID: 33255575 PMCID: PMC7760912 DOI: 10.3390/ani10122204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to compare the effect of the use of enrofloxacin and a probiotic containing Enterococcus faecium and Bacillus amyloliquefaciens strains in the first week of life of chickens on oxidative and epigenetic changes in molecules and intestinal integrity. The three treatments were as follows: the control group received no additive in the drinking water (GC); the second group (GP) received a probiotic preparation in the drinking water during the first five days of life, providing E. faecium strain 4a1713 at 1.0 × 107 CFU/L water and B. amyloliquefaciens 4b1822 at 1.0 × 107 CFU/L water, the third group (GA) received an antibiotic (enrofloxacin 0.5 mL/L water) in the drinking water during the first five days of life. The use of both enrofloxacin and a probiotic containing E. faecium and B. amyloliquefaciens strains in chickens' first week of life improved intestinal integrity and reduced inflammation and oxidative and epigenetic changes in the small intestine. This effect was evident both at 6 days of age and at the end of the rearing period.
Collapse
Affiliation(s)
- Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Science and Bioeconomy, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland;
| | - Paweł Konieczka
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (P.K.); (J.J.)
| | - Anna Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Animal Science and Bioeconomy, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland;
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (P.K.); (J.J.)
| |
Collapse
|
20
|
Hepatic DNA Methylation in Response to Early Stimulation of Microbiota with Lactobacillus Synbiotics in Broiler Chickens. Genes (Basel) 2020; 11:genes11050579. [PMID: 32455682 PMCID: PMC7290315 DOI: 10.3390/genes11050579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
DNA methylation inhibits DNA transcription by the addition of methyl residues to cysteine within the CpG islands of gene promoters. The process of DNA methylation can be modulated by environmental factors such as intestinal microbiota. In poultry, the composition of the intestinal microbiota can be stimulated by in ovo delivery of synbiotics. The present study aims to determine the effect of Lactobacillus synbiotics delivered in ovo on the level of hepatic DNA methylation in broiler chickens. In ovo stimulation was performed on day 12 of egg incubation. Bioactive compounds delivered in ovo included (S1)—Lactobacillus salivarius with GOS and (S2)—Lactobacillus plantarum with RFO. Samples were collected from six individuals from each group on day 42 post-hatching. DNA methylation of five genes selected on the basis of the transcriptome data were analyzed using the qMSP method. Significant changes were observed in DNA methylation of genes in liver including ANGPTL4 and NR4A3, after S2 delivery. The obtained results confirm that the downregulation of metabolic gene expression in the liver mediated by in ovo stimulation had epigenetic characteristics.
Collapse
|
21
|
de Lima RMS, Barth B, Arcego DM, de Mendonça Filho EJ, Clappison A, Patel S, Wang Z, Pokhvisneva I, Sassi RB, Hall GBC, Kobor MS, O'Donnell KJ, Bittencourt APSDV, Meaney MJ, Dalmaz C, Silveira PP. Amygdala 5-HTT Gene Network Moderates the Effects of Postnatal Adversity on Attention Problems: Anatomo-Functional Correlation and Epigenetic Changes. Front Neurosci 2020; 14:198. [PMID: 32256307 PMCID: PMC7093057 DOI: 10.3389/fnins.2020.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
Variations in serotoninergic signaling have been related to behavioral outcomes. Alterations in the genome, such as DNA methylation and histone modifications, are affected by serotonin neurotransmission. The amygdala is an important brain region involved in emotional responses and impulsivity, which receives serotoninergic input. In addition, studies suggest that the serotonin transporter gene network may interact with the environment and influence the risk for psychiatric disorders. We propose to investigate whether/how interactions between the exposure to early life adversity and serotonin transporter gene network in the amygdala associate with behavioral disorders. We constructed a co-expression-based polygenic risk score (ePRS) reflecting variations in the function of the serotonin transporter gene network in the amygdala and investigated its interaction with postnatal adversity on attention problems in two independent cohorts from Canada and Singapore. We also described how interactions between ePRS-5-HTT and postnatal adversity exposure predict brain gray matter density and variation in DNA methylation across the genome. We observed that the expression-based polygenic risk score, reflecting the function of the amygdala 5-HTT gene network, interacts with postnatal adversity, to predict attention and hyperactivity problems across both cohorts. Also, both postnatal adversity score and amygdala ePRS-5-HTT score, as well as their interaction, were observed to be associated with variation in DNA methylation across the genome. Variations in gray matter density in brain regions linked to attentional processes were also correlated to our ePRS score. These results confirm that the amygdala 5-HTT gene network is strongly associated with ADHD-related behaviors, brain cortical density, and epigenetic changes in the context of adversity in young children.
Collapse
Affiliation(s)
- Randriely Merscher Sobreira de Lima
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Barbara Barth
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
| | - Danusa Mar Arcego
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Euclides José de Mendonça Filho
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Programa de Pós-Graduação em Psicologia, Instituto de Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrew Clappison
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | - Roberto Britto Sassi
- Mood Disorders Program, Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Geoffrey B C Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Kieran J O'Donnell
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| | | | - Michael J Meaney
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Carla Dalmaz
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.,Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Atti Le giornate della ricerca scientificae delle esperienze professionali dei giovani: Società Italiana di Igiene, Medicina Preventiva e Sanità Pubblica (SItI) Roma 20-21 dicembre 2019. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2020; 60:E1-E85. [PMID: 32258536 PMCID: PMC7105054 DOI: 10.15167/2421-4248/jpmh2019.60.4s3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|