1
|
Mertens J, Traxler L, Karbacher L, Borgogno O, Ozbun T, Champion K, Smaling A, Boeckle B, Mack H, Defrancesco M. An accelerated human in-vitro aging model mimicsin-vivo aging and facilitates dynamic testing of anti-aging compounds. RESEARCH SQUARE 2025:rs.3.rs-6173768. [PMID: 40195985 PMCID: PMC11975038 DOI: 10.21203/rs.3.rs-6173768/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Biological aging drives cellular dysfunction and human disease, yet studying human-specific aging dynamics remains challenging due to limited experimental platforms. Here we show that long-term post-mitotic culture of human fibroblasts authentically recapitulates and accelerates in-vivo aging signatures. Longitudinal paired transcriptomic-epigenetic analyses revealed that in-vitro aging mirrors in-vivo primary fibroblasts aging, with concordant transcriptional aging pathways and accelerated epigenetic clock aging patterns. Direct neuronal conversion of pre-aged fibroblasts preserved biological age, enabling pseudo-longitudinal modeling of neuronal aging. Single-cell transcriptomics revealed a time-dependent increase in age-heterogeneity, reflecting in-vivo observations and revealing heterogeneity driven by the variable loss of transcriptional programs. Using this accelerated aging platform, we evaluated anti-aging compounds: Metformin broadly halted transcriptomic and epigenetic aging, while Rapamycin showed limited efficacy. These findings align with clinical evidence, demonstrating our platform's capacity to predict therapeutic anti-aging efficacy with molecular resolution. This system advances our understanding of aging mechanisms and facilitates the development of interventions against age-related diseases.
Collapse
|
2
|
Glover C, Fairbanks S, Robertson CC, Richard Keene F, Green NH, Thomas JA. An optical ratiometric approach using enantiopure luminescent metal complexes indicates changes in the average quadruplex DNA content as primary cells undergo multiple divisions. Dalton Trans 2025. [PMID: 40100080 DOI: 10.1039/d4dt03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The three stereoisomers of a previously reported dinuclear ruthenium(II) complex have been quantitatively separated using cation-exchange chromatography and the individual crystal structures of the racemic pair are reported. Cell-based studies on the three stereoisomers disclosed differences in the rate of uptake of the two chiral forms of the rac diastereoisomer with the ΛΛ-enantiomer being taken up noticeably more rapidly than the ΔΔ-form. Cell viability studies reveal that the three cations show identical cytotoxicity over 24 hours, but over more extended exposure periods, the meso-ΔΛ stereoisomer becomes slightly less active. More significantly, microscopy studies revealed that although both isomers display a near infra-red "light-switch" effect associated with binding to duplex DNA on binding to chromatin in live MCF7 and L5178-R cells, only the ΛΛ enantiomer displays a distinctive, blue-shifted component associated with binding to quadruplex DNA. An analysis of the ratio of "quadruplex emission" compared to "duplex emission" for the ΛΛ-enantiomer indicated that there was a decrease in the average quadruplex DNA content within live primary cells as they undergo multiple cell divisions.
Collapse
Affiliation(s)
- Caroline Glover
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Simon Fairbanks
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Craig C Robertson
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| | - F Richard Keene
- Discipline of Chemistry, School of Chemistry, Physics & Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Nicola H Green
- School of Chemical, Materials and Biological Engineering, Sir Robert Hadfield Building, University of Sheffield, Sheffield, S1 3JD, UK
| | - Jim A Thomas
- Chemistry, School of Mathematics and, Physical Sciences, Dainton Building, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
3
|
Aderinto SO, John T, Onawole A, Galleh RP, Thomas JA. Iridium(III)-based minor groove binding complexes as DNA photocleavage agents. Dalton Trans 2024; 53:7282-7291. [PMID: 38466178 DOI: 10.1039/d4dt00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Transition metal complexes containing the qtpy ligand (2':4,4'':4',4'''-quaterpyridyl) are known to be DNA intercalators or minor groove binders. In this study, new tricationic iridium(III) complexes of qtpy are reported. Both [Ir(bpy)2(qtpy)]3+1 and [Ir(phen)2(qtpy)]3+2 display good water solubility as chloride salts. The complexes possess high-energy excited states, which are quenched in the presence of duplex DNA and even by the mononucleotides guanosine monophosphate and adenosine monophosphate. Further studies reveal that although the complexes bind to quadruplex DNA, they display a preference for duplex structures, which are bound with an order of magnitude higher affinities than their isostructural dicationic RuII-analogues. Detailed molecular dynamics simulations confirm that the complexes are groove binders through the insertion of, predominantly, the qtpy ligand into the minor groove. Photoirradiation of 1 in the presence of plasmid DNA confirms that this class of complexes can function as synthetic photonucleases by cleaving DNA.
Collapse
Affiliation(s)
- Stephen O Aderinto
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abdulmujeeb Onawole
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Jim A Thomas
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
| |
Collapse
|
4
|
Yousaf M, Fatima D, Amin J, Noureen A, Fatmi MQ. Discovering potential stabilizers for KRAS22RT G-quadruplex DNA: an alternative next generation approach to treat pancreatic cancer. J Biomol Struct Dyn 2023; 41:11957-11968. [PMID: 36729158 DOI: 10.1080/07391102.2023.2174188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/25/2022] [Indexed: 02/03/2023]
Abstract
KRAS is the signature gene responsible for the occurrence of pancreatic cancer, which is a complex, multifactorial and intractable lethal malignancy. Prevention and treatment of the ailment have always been a key motivation behind the search for new therapeutic drug molecules. G-quadruplexes are non-canonical guanine-rich secondary structures, commonly formed at eukaryotic telomeric ends, oncogenic promotors and G-rich regions of the DNA. These G-quadruplexes play a crucial role in the regulation of gene expression and maintenance of genome integrity, therefore, they are considered as emerging potential therapeutic drug targets. The present study is concerned with the discovery of a potential stabilizer for KRAS22RT G-quadruplex DNA, located in the NHE region of the promotor, while inhibiting the upregulation of KRAS proto-oncogene, as an alternative approach for the treatment of pancreatic cancer. Various chemical libraries have been virtually screened against the targeted G4 structure and 143 compounds showed promising results. However, molecular dynamic studies, ADME and toxicity analyses predicted that three compounds belonging to the class of tetra-substituted phenanthrolines (i.e., 7i, 7j and 7k) can not only effectively stabilize KRAS22RT G4 structure but also have least toxic effects in the in vivo system. Therefore, it is highly recommended to further investigate their effectiveness and efficacy through experimental analysis in laboratory.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Dua Fatima
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Javaria Amin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Aqsa Noureen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Rauchhaus J, Robinson J, Monti L, Di Antonio M. G-quadruplexes Mark Sites of Methylation Instability Associated with Ageing and Cancer. Genes (Basel) 2022; 13:1665. [PMID: 36140833 PMCID: PMC9498706 DOI: 10.3390/genes13091665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/03/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Regulation of the epigenome is critical for healthy cell function but can become disrupted with age, leading to aberrant epigenetic profiles including altered DNA methylation. Recent studies have indicated that DNA methylation homeostasis can be compromised by the formation of DNA secondary structures known as G-quadruplexes (G4s), which form in guanine-rich regions of the genome. G4s can be recognised and bound by certain methylation-regulating enzymes, and in turn perturb the surrounding methylation architecture. However, the effect G4 formation has on DNA methylation at critical epigenetic sites remains elusive and poorly explored. In this work, we investigate the association between G4 sequences and prominent DNA methylation sites, termed 'ageing clocks', that act as bona fide dysregulated regions in aged and cancerous cells. Using a combination of in vitro (G4-seq) and in cellulo (BG4-ChIP) G4 distribution maps, we show that ageing clocks sites are significantly enriched with G4-forming sequences. The observed enrichment also varies across species and cell lines, being least significant in healthy cells and more pronounced in tumorigenic cells. Overall, our results suggest a biological significance of G4s in the realm of DNA methylation, which may be important for further deciphering the driving forces of diseases characterised by epigenetic abnormality, including ageing.
Collapse
Affiliation(s)
- Jonas Rauchhaus
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Imperial College London, Department of Bioengineering, Royal School of Mines, Exhibition Road, London SW7 2AZ, UK
| | - Jenna Robinson
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ludovica Monti
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marco Di Antonio
- Imperial College London, Chemistry Department, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, UK
- Institute of Chemical Biology, Molecular Science Research Hub, 82 Wood Lane, London W12 0BZ, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
6
|
Finesso GE, McDevitt RA, Roy R, Brinster LR, Di Francesco A, Meade T, de Cabo R, Ferrucci L, Perdue KA. Impact of large granular lymphocyte leukemia on blood DNA methylation and epigenetic clock modeling in Fischer 344 rats. J Gerontol A Biol Sci Med Sci 2021; 77:956-963. [PMID: 34718551 DOI: 10.1093/gerona/glab328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/14/2022] Open
Abstract
Age-dependent differences in methylation at specific cytosine-guanosine sites (CpGs) have been used in "epigenetic clock" formulas to predict age. Deviations of epigenetic age from chronological age are informative of health status and are associated with adverse health outcomes, including mortality. In most cases, epigenetic clocks are performed on methylation from DNA extracted from circulating blood cells. However, the effect of neoplastic cells in the circulation on estimation and interpretation of epigenetic clocks is not well understood. Here, we explored this using Fischer 344 (F344) rats, a strain that often develops large granular lymphocyte leukemia (LGL). We found clear histological markers of LGL pathology in the spleens and livers of 27 out of 61 rats aged 17-27 months. We assessed DNA methylation by reduced representation bisulfite sequencing with coverage of 3 million cytosine residues. Although LGL broadly increased DNA methylation variability, it did not change epigenetic aging. Despite this, inclusion of rats with LGL in clock training sets significantly altered predictor selection probability at 83 of 121 commonly utilized CpGs. Furthermore, models trained on rat samples that included individuals with LGL had greater absolute age error than those trained exclusively on LGL-free rats (39% increase; p<0.0001). We conclude that the epigenetic signals for aging and LGL are distinct, such that LGL assessment is not necessary for valid measures of epigenetic age in F344 rats. The precision and architecture of constructed epigenetic clock formulas, however, can be influenced by the presence of neoplastic hematopoietic cells in training set populations.
Collapse
Affiliation(s)
- Giovanni E Finesso
- Comparative Medicine Section, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Ross A McDevitt
- Comparative Medicine Section, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Roshni Roy
- Laboratory of Molecular Biology and Immunology, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Lauren R Brinster
- Office of Research Services, Division of Veterinary Resources, National Institutes of Health, Bethesda, MD
| | - Andrea Di Francesco
- Translational Gerontology Branch, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD.,Calico Life Sciences, South San Francisco, CA
| | - Theresa Meade
- Comparative Medicine Section, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Kathy A Perdue
- Comparative Medicine Section, National Institute on Aging - Intramural Research Program, National Institutes of Health, Baltimore, MD
| |
Collapse
|
7
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021. [PMID: 33565261 DOI: 10.1002/wrna.1643.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
8
|
Angarola BL, Anczuków O. Splicing alterations in healthy aging and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1643. [PMID: 33565261 DOI: 10.1002/wrna.1643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Alternative RNA splicing is a key step in gene expression that allows generation of numerous messenger RNA transcripts encoding proteins of varied functions from the same gene. It is thus a rich source of proteomic and functional diversity. Alterations in alternative RNA splicing are observed both during healthy aging and in a number of human diseases, several of which display premature aging phenotypes or increased incidence with age. Age-associated splicing alterations include differential splicing of genes associated with hallmarks of aging, as well as changes in the levels of core spliceosomal genes and regulatory splicing factors. Here, we review the current known links between alternative RNA splicing, its regulators, healthy biological aging, and diseases associated with aging or aging-like phenotypes. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | - Olga Anczuków
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut, USA.,Institute for Systems Genomics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
9
|
Kouidou S, Malousi A, Andreou AZ. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: Triggering a Lethal Fight to Keep Control of the Ten-Eleven Translocase (TET)-Associated DNA Demethylation? Pathogens 2020; 9:E1006. [PMID: 33266135 PMCID: PMC7760189 DOI: 10.3390/pathogens9121006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
The extended and diverse interference of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in multiple host functions and the diverse associated symptoms implicate its involvement in fundamental cellular regulatory processes. The activity of ten-eleven translocase 2 (TET2) responsible for selective DNA demethylation, has been recently identified as a regulator of endogenous virus inactivation and viral invasion, possibly by proteasomal deregulation of the TET2/TET3 activities. In a recent report, we presented a detailed list of factors that can be affected by TET activity, including recognition of zinc finger protein binding sites and bimodal promoters, by enhancing the flexibility of adjacent sequences. In this review, we summarize the TET-associated processes and factors that could account for SARS-CoV-2 diverse symptoms. Moreover, we provide a correlation for the observed virus-induced symptoms that have been previously associated with TET activities by in vitro and in vitro studies. These include early hypoxia, neuronal regulation, smell and taste development, liver, intestinal, and cardiomyocyte differentiation. Finally, we propose that the high mortality of SARS-CoV-2 among adult patients, the different clinical symptoms of adults compared to children, the higher risk of patients with metabolic deregulation, and the low mortality rates among women can all be accounted for by the complex balance of the three enzymes with TET activity, which is developmentally regulated. This activity is age-dependent, related to telomere homeostasis and integrity, and associated with X chromosome inactivation via (de)regulation of the responsible XIST gene expression.
Collapse
Affiliation(s)
- Sofia Kouidou
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Andigoni Malousi
- Lab of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | |
Collapse
|
10
|
Malousi A, Kouidou S, Tsagiopoulou M, Papakonstantinou N, Bouras E, Georgiou E, Tzimagiorgis G, Stamatopoulos K. MeinteR: A framework to prioritize DNA methylation aberrations based on conformational and cis-regulatory element enrichment. Sci Rep 2019; 9:19148. [PMID: 31844073 PMCID: PMC6915744 DOI: 10.1038/s41598-019-55453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
DNA methylation studies have been reformed with the advent of single-base resolution arrays and bisulfite sequencing methods, enabling deeper investigation of methylation-mediated mechanisms. In addition to these advancements, numerous bioinformatics tools address important computational challenges, covering DNA methylation calling up to multi-modal interpretative analyses. However, contrary to the analytical frameworks that detect driver mutational signatures, the identification of putatively actionable epigenetic events remains an unmet need. The present work describes a novel computational framework, called MeinteR, that prioritizes critical DNA methylation events based on the following hypothesis: critical aberrations of DNA methylation more likely occur on a genomic substrate that is enriched in cis-acting regulatory elements with distinct structural characteristics, rather than in genomic “deserts”. In this context, the framework incorporates functional cis-elements, e.g. transcription factor binding sites, tentative splice sites, as well as conformational features, such as G-quadruplexes and palindromes, to identify critical epigenetic aberrations with potential implications on transcriptional regulation. The evaluation on multiple, public cancer datasets revealed significant associations between the highest-ranking loci with gene expression and known driver genes, enabling for the first time the computational identification of high impact epigenetic changes based on high-throughput DNA methylation data.
Collapse
Affiliation(s)
- Andigoni Malousi
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Sofia Kouidou
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Tsagiopoulou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nikos Papakonstantinou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Emmanouil Bouras
- Lab. of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elisavet Georgiou
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Lab. of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| |
Collapse
|
11
|
Developing Novel G-Quadruplex Ligands: from Interaction with Nucleic Acids to Interfering with Nucleic Acid⁻Protein Interaction. Molecules 2019; 24:molecules24030396. [PMID: 30678288 PMCID: PMC6384609 DOI: 10.3390/molecules24030396] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
G-quadruplex is a special secondary structure of nucleic acids in guanine-rich sequences of genome. G-quadruplexes have been proved to be involved in the regulation of replication, DNA damage repair, and transcription and translation of oncogenes or other cancer-related genes. Therefore, targeting G-quadruplexes has become a novel promising anti-tumor strategy. Different kinds of small molecules targeting the G-quadruplexes have been designed, synthesized, and identified as potential anti-tumor agents, including molecules directly bind to the G-quadruplex and molecules interfering with the binding between the G-quadruplex structures and related binding proteins. This review will explore the feasibility of G-quadruplex ligands acting as anti-tumor drugs, from basis to application. Meanwhile, since helicase is the most well-defined G-quadruplex-related protein, the most extensive research on the relationship between helicase and G-quadruplexes, and its meaning in drug design, is emphasized.
Collapse
|